• Title/Summary/Keyword: Volume Calibration

검색결과 252건 처리시간 0.025초

개구관에서의 정체압을 이용한 차동 압력 방식의 휴대형 호흡측정 시스템 개발 (A Development Of The Portable Spirometry System Of Pressure Method Using Static Pressure In Pitot Tube)

  • 이종수;신창민;김영길
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권6호
    • /
    • pp.479-486
    • /
    • 2001
  • 호흡 측정기는 기도를 통해 환자의 폐에 드나드는 기체의 양을 측정하여 호흡에 관련된 기능을 판단하는 의료기기이다. 수술실에서 전신 마취시 사용하는 마취기용 인공호흡기는 미미한 양의 마취제 과용으로도 환자의 생명을 앗아갈 수 있으므로 정확한 호흡량 측정이 특히 중요하다. 본 연구에서는 호흡량 측정에 영향을 주는 요인들로부터 정확한 유량을 산출해내는 방법에 대해 고찰하고. 마취용 인공호흡기에 적용하여 수술환자의 호흡특성을 알아내는 호홉측정기를 구현하였다. 인공호흡기에 많이 사용되고 있는 차동압력형 유량센서를 이용하여 압력, 온도, 가스구성의 상관관계에 따라 유랑을 계측하였으며 유량-타동압력의 비선형적 관계를 선형화하였다. 또한, 휴대형 기기에 적합하도록 전력 효율을 최대화 할 수 있게 시스템을 설계하였다

  • PDF

Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

  • Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.433-446
    • /
    • 2020
  • In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. A circular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

중성자 방사화법을 이용한 감마선원 제조 및 HPGe 검출기 효율 결정 (Manufacture of a Gamma-ray Source using the Neutron Activation and Determination of a HPGe Detector Efficiency)

  • 서범경;이길용;윤윤열;이근우
    • Journal of Radiation Protection and Research
    • /
    • 제29권1호
    • /
    • pp.17-23
    • /
    • 2004
  • HPGe 검출기를 이용한 방사능 분석 시 효율교정을 위하여 통상적으로 사용하는 상용의 감마선 표준선원을 구입하는데 따르는 금전적인 문제와 장기간의 소요시간 등의 문제를 해결하기 위하여 본 연구에서는 표준선원을 직접 제작하였다. 측정하고자 하는 에너지 영역의 감마선을 방출하는 핵종이 포함된 시약을 원자로에서 조사시켜 방사화된 시약을 수용액 상태로 만들어 표준선원을 제조하였다. 제조한 방사선원을 상용의 표준선원과 비교하였으며 효율교정용 선원으로 사용할 수 있다는 것을 확인하였다. 또한 일상적인 방사능 분석과정에서 발생할 수 있는 표준선원과 측정 시료의 부피 차이에 따른 측정 효율의 변화정도를 조사하기 위하여 방사능 분석에서 사용되고 있는 다양한 측정용기에 대하여 표준선원의 부피 변화에 따른 효율의 변화 정도를 조사하였다.

슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정 (Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow)

  • 안예찬;오병도;김종록;김무환;강덕홍
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

현장 임계간격을 이용한 다지 회전교차로 분석 (Evaluation of Multi-legged Roundabout Using Surveyed Critical Gap Acceptance)

  • 박순용;김동녕;정준화
    • 한국콘텐츠학회논문지
    • /
    • 제13권9호
    • /
    • pp.400-409
    • /
    • 2013
  • 본 연구에서는 한국 운전자의 특성을 고려한 회전교차로 진입 임계간격을 조사하여 이를 기반으로 다양한 교통조건 및 다지 회전교차로에 대하여 그 효과를 분석하였다. 회전교차로의 임계간격은 4지, 5지, 6지, 그리고 7지에 대하여 현장조사를 수행하였으며, Raff의 추정기법을 이용하여 임계간격을 도출하였다. 도출된 임계간격은 모의실험을 위한 정산 및 통계적 검증과정을 거쳤으며, 이를 기반으로 다양한 조건에서 회전교차로 운영분석을 수행하였다. 그 결과 운영 교통량 및 회전비율 등에 따른 다지 회전교차로의 설계요소인 내접원 직경을 서비스수준별로 제시하였다. 이는 향후 회전교차로 설계지침에 반영할 수 있을 것으로 사료된다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

기름 유량표준장치의 개발 및 측정 불확도에 관한 연구 (A Study on the Development and the Uncertainty Analysis of Oil Flow Standard System)

  • 임기원;최종오
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1071-1080
    • /
    • 2003
  • A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.

Build-Up 기법을 이용한 경질유 표준장치의 측정범위 확장 (Flow Range Extension of Light Oil Flowmeter Standard System with Build-Up Technique)

  • 임기원;최종오
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1139-1146
    • /
    • 2006
  • Light Oil Flow Standard System(LOFSS) in Korea Research Institute of Standards and Science(KRISS) was designed for oil flowmeter calibration. In order to extend the flow range from 120 $m^3/h$ to 200 $m^3/h$, the build-up technique was applied with two positive displacement flowmeters as master flowmeter. The master flowmeters were calibrated against with LOFSS, which has 0.04 % uncertainty of flow quantity determination, then the test flowmeter is calibrated against two master flowmeters. For uncertainty analysis, the repeatability of master flowmeters, the variation of the fluid density and the pipe volume due to temperature change were scrutinized. The contribution of each uncertainty factors to the calibrator and the correlation of each factors were discussed. For investigating the feasibility of uncertainty analysis, a turbine flowmeter as a transfer package was tested with LOFSS and two reference flowmeter. The hypothesis test for both results was coincide with a 95 % significant level. This means that the uncertainty analysis procedure of the calibrator is reasonable and the extension of flow range with master meters was carry out successfully.

해양시스템 모형실험을 위한 수중운동계측시스템 개발 연구 (Development of Underwater Motion Measurement System for Model Test of Ocean System)

  • 최종수;홍섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.166-172
    • /
    • 2004
  • An underwater motion measurement system was constructed for applications to the model basin. A commercial motion capture system, FALCON of Motion Analysis Corp., which corrects automatically the distortion caused by refraction of the light passing through water and air, was adopted for underwater motion measurement. The modifications of FALCON system were performed: waterproofing camera housings, markers, connectors, and a new blue ring lighter. the accuracy of the motion measurement was obtained within the calibration error of 0.87mm in average and 0.89mm in standard deviation for the distance of 500mm between two markers on the calibration device. the volume of $2100mm(length)\times2100mm(breadth)\times2300mm(Height)$ was covered with 4 cameras of the underwater motion measurement system. For the performance verification, motion measurement test of a vertical mooring chain model excited at the top end was carried out. The 3D motions of mooring model were measured with variable amplitude and period of the forced excitation. Higher order motions of the mooring model were observed as the excitation period decreases. the performance of the system was verified by successfully measuring 3D motion of mooring model.

  • PDF

남강댐유역 내 주요 하천관측지점의 홍수유출량 추정을 위한 단위도 모형 비교연구 (A Comparative Study of Unit Hydrograph Models for Flood Runoff Estimation for the Streamflow Stations in Namgang-Dam Watershed)

  • 김성민;김성재;김상민
    • 한국농공학회논문집
    • /
    • 제54권3호
    • /
    • pp.65-74
    • /
    • 2012
  • In this study, three different unit hydrograph methods (NRCS, Snyder and Clark) in the HEC-HMS were compared to find better fit with the observed data in the Namgang-Dam watershed. The Sancheong, Shinan, and Changchon in Namgang-Dam watershed were selected as the study watersheds. The input data for HEC-HMS were calculated land use, digital elevation map, stream, and watershed map provided by WAter Management Information System (WAMIS). Sixty six storms from 2004 to 2011 were selected for model calibration and validation. Three unit hydrograph methods were compared with the observed data in terms of simulated runoff volume, and peak runoff for the selected storms. The results showed that the coefficient of determination ($R^2$) for the peak runoff was 0.8295~0.9999 and root mean square error (RMSE) was 0.029~0.086 mm/day for calibration stages. In the model validation, $R^2$ for the peak runoff was 0.9061~0.9916 and RMSE was 0.030~0.088 mm/day which were more accurate than calibrated data. Analysis of variance showed that there was no significant difference among the three unit hydrograph methods.