• Title/Summary/Keyword: Volterra operators

Search Result 13, Processing Time 0.018 seconds

SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES

  • Mengestie, Tesfa
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1801-1816
    • /
    • 2017
  • We study some spectral properties of Volterra-type integral operators $V_g$ and $I_g$ with holomorphic symbol g on the Fock-Sobolev spaces ${\mathcal{F}}^p_{{\psi}m}$. We showed that $V_g$ is bounded on ${\mathcal{F}}^p_{{\psi}m}$ if and only if g is a complex polynomial of degree not exceeding two, while compactness of $V_g$ is described by degree of g being not bigger than one. We also identified all those positive numbers p for which the operator $V_g$ belongs to the Schatten $S_p$ classes. Finally, we characterize the spectrum of $V_g$ in terms of a closed disk of radius twice the coefficient of the highest degree term in a polynomial expansion of g.

ESSENTIAL NORMS OF INTEGRAL OPERATORS

  • Mengestie, Tesfa
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.523-537
    • /
    • 2019
  • We estimate the essential norms of Volterra-type integral operators $V_g$ and $I_g$, and multiplication operators $M_g$ with holomorphic symbols g on a large class of generalized Fock spaces on the complex plane ${\mathbb{C}}$. The weights defining these spaces are radial and subjected to a mild smoothness conditions. In addition, we assume that the weights decay faster than the classical Gaussian weight. Our main result estimates the essential norms of $V_g$ in terms of an asymptotic upper bound of a quantity involving the inducing symbol g and the weight function, while the essential norms of $M_g$ and $I_g$ are shown to be comparable to their operator norms. As a means to prove our main results, we first characterized the compact composition operators acting on the spaces which is interest of its own.

On ϑ-quasi-Geraghty Contractive Mappings and Application to Perturbed Volterra and Hypergeometric Operators

  • Olalekan Taofeek Wahab
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.45-60
    • /
    • 2023
  • In this paper we suggest an enhanced Geraghty-type contractive mapping for examining the existence properties of classical nonlinear operators with or without prior degenerates. The nonlinear operators are proved to exist with the imposition of the Geraghty-type condition in a non-empty closed subset of complete metric spaces. To showcase some efficacies of the Geraghty-type condition, convergent rate and stability are deduced. The results are used to study some asymptotic properties of perturbed integral and hypergeometric operators. The results also extend and generalize some existing Geraghty-type conditions.

A HYBRID VOLTERRA-TYPE EQUATION WITH TWO TYPES OF IMPULSES

  • Belbas S.A.;Park Jong-Seo
    • The Pure and Applied Mathematics
    • /
    • v.13 no.2 s.32
    • /
    • pp.121-136
    • /
    • 2006
  • We formulate and analyze a hybrid system model that involves Volterra integral operators with multiple integrals and two types of impulsive terms. We give a constructive proof, via an iteration method, of existence and uniqueness of solutions.

  • PDF

EXITSENCE OF MILD SOLUTIONS FOR SEMILINEAR MIXED VOLTERRA-FREDHOLM FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCALS

  • LEE, HYUN MORK
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.365-375
    • /
    • 2015
  • Of concern is the existence, uniqueness, and continuous dependence of a mild solution of a nonlocal Cauchy problem for a semilinear mixed Volterra-Fredholm functional integrodifferential equation. Our analysis is based on the theory of a strongly continuous semigroup of operators and the Banach fixed point theorem.

COMPACT INTERTWINING RELATIONS FOR COMPOSITION OPERATORS BETWEEN THE WEIGHTED BERGMAN SPACES AND THE WEIGHTED BLOCH SPACES

  • Tong, Ce-Zhong;Zhou, Ze-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.125-135
    • /
    • 2014
  • We study the compact intertwining relations for composition operators, whose intertwining operators are Volterra type operators from the weighted Bergman spaces to the weighted Bloch spaces in the unit disk. As consequences, we find a new connection between the weighted Bergman spaces and little weighted Bloch spaces through this relations.