• 제목/요약/키워드: Volterra integral

검색결과 55건 처리시간 0.024초

SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES

  • Mengestie, Tesfa
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1801-1816
    • /
    • 2017
  • We study some spectral properties of Volterra-type integral operators $V_g$ and $I_g$ with holomorphic symbol g on the Fock-Sobolev spaces ${\mathcal{F}}^p_{{\psi}m}$. We showed that $V_g$ is bounded on ${\mathcal{F}}^p_{{\psi}m}$ if and only if g is a complex polynomial of degree not exceeding two, while compactness of $V_g$ is described by degree of g being not bigger than one. We also identified all those positive numbers p for which the operator $V_g$ belongs to the Schatten $S_p$ classes. Finally, we characterize the spectrum of $V_g$ in terms of a closed disk of radius twice the coefficient of the highest degree term in a polynomial expansion of g.

APPROXIMATION OF SOLUTIONS THROUGH THE FIBONACCI WAVELETS AND MEASURE OF NONCOMPACTNESS TO NONLINEAR VOLTERRA-FREDHOLM FRACTIONAL INTEGRAL EQUATIONS

  • Supriya Kumar Paul;Lakshmi Narayan Mishra
    • Korean Journal of Mathematics
    • /
    • 제32권1호
    • /
    • pp.137-162
    • /
    • 2024
  • This paper consists of two significant aims. The first aim of this paper is to establish the criteria for the existence of solutions to nonlinear Volterra-Fredholm (V-F) fractional integral equations on [0, L], where 0 < L < ∞. The fractional integral is described here in the sense of the Katugampola fractional integral of order λ > 0 and with the parameter β > 0. The concepts of the fixed point theorem and the measure of noncompactness are used as the main tools to prove the existence of solutions. The second aim of this paper is to introduce a computational method to obtain approximate numerical solutions to the considered problem. This method is based on the Fibonacci wavelets with collocation technique. Besides, the results of the error analysis and discussions of the accuracy of the solutions are also presented. To the best knowledge of the authors, this is the first computational method for this generalized problem to obtain approximate solutions. Finally, two examples are discussed with the computational tables and convergence graphs to interpret the efficiency and applicability of the presented method.

RETARDED NONLINEAR INTEGRAL INEQUALITIES OF GRONWALL-BELLMAN-PACHPATTE TYPE AND THEIR APPLICATIONS

  • Abdul Shakoor;Mahvish Samar;Samad Wali;Muzammil Saleem
    • 호남수학학술지
    • /
    • 제45권1호
    • /
    • pp.54-70
    • /
    • 2023
  • In this article, we state and prove several new retarded nonlinear integral and integro-differential inequalities of Gronwall-Bellman-Pachpatte type. These inequalities generalize some former famous inequalities and can be used in examining the existence, uniqueness, boundedness, stability, asymptotic behaviour, quantitative and qualitative properties of solutions of nonlinear differential and integral equations. Applications are provided to demonstrate the strength of our inequalities in estimating the boundedness and global existence of the solution to initial value problem for nonlinear integro-differential equation and Volterra type retarded nonlinear equation. This research work will ensure to open the new opportunities for studying of nonlinear dynamic inequalities on time scale structure of varying nature.

USING CROOKED LINES FOR THE HIGHER ACCURACY IN SYSTEM OF INTEGRAL EQUATIONS

  • Hashemiparast, S.M.;Sabzevari, M.;Fallahgoul, H.
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.145-159
    • /
    • 2011
  • The numerical solution to the linear and nonlinear and linear system of Fredholm and Volterra integral equations of the second kind are investigated. We have used crooked lines which includ the nodes specified by modified rationalized Haar functions. This method differs from using nominal Haar or Walsh wavelets. The accuracy of the solution is improved and the simplicity of the method of using nominal Haar functions is preserved. In this paper, the crooked lines with unknown coefficients under the specified conditions change the system of integral equations to a system of equations. By solving this system the unknowns are obtained and the crooked lines are determined. Finally, error analysis of the procedure are considered and this procedure is applied to the numerical examples, which illustrate the accuracy and simplicity of this method in comparison with the methods proposed by these authors.

ANALYSIS OF HILFER FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Saif Aldeen M. Jameel;Saja Abdul Rahman;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.259-273
    • /
    • 2024
  • In this manuscript, we study the sufficient conditions for existence and uniqueness results of solutions of impulsive Hilfer fractional Volterra-Fredholm integro-differential equations with integral boundary conditions. Fractional calculus and Banach contraction theorem used to prove the uniqueness of results. Moreover, we also establish Hyers-Ulam stability for this problem. An example is also presented at the end.

A HYBRID VOLTERRA-TYPE EQUATION WITH TWO TYPES OF IMPULSES

  • Belbas S.A.;Park Jong-Seo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권2호
    • /
    • pp.121-136
    • /
    • 2006
  • We formulate and analyze a hybrid system model that involves Volterra integral operators with multiple integrals and two types of impulsive terms. We give a constructive proof, via an iteration method, of existence and uniqueness of solutions.

  • PDF

NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR CONTROL SYSTEMS DESCRIBED BY INTEGRAL EQUATIONS WITH DELAY

  • Elangar, Gamal-N.;Mohammad a Kazemi;Kim, Hoon-Joo
    • 대한수학회지
    • /
    • 제37권4호
    • /
    • pp.625-643
    • /
    • 2000
  • In this paper we formulate an optimal control problem governed by time-delay Volterra integral equations; the problem includes control constraints as well as terminal equality and inequality constraints on the terminal state variables. First, using a special type of state and control variations, we represent a relatively simple and self-contained method for deriving new necessary conditions in the form of Pontryagin minimum principle. We show that these results immediately yield classical Pontryagin necessary conditions for control processes governed by ordinary differential equations (with or without delay). Next, imposing suitable convexity conditions on the functions involved, we derive Mangasarian-type and Arrow-type sufficient optimality conditions.

  • PDF

ESSENTIAL NORMS OF INTEGRAL OPERATORS

  • Mengestie, Tesfa
    • 대한수학회지
    • /
    • 제56권2호
    • /
    • pp.523-537
    • /
    • 2019
  • We estimate the essential norms of Volterra-type integral operators $V_g$ and $I_g$, and multiplication operators $M_g$ with holomorphic symbols g on a large class of generalized Fock spaces on the complex plane ${\mathbb{C}}$. The weights defining these spaces are radial and subjected to a mild smoothness conditions. In addition, we assume that the weights decay faster than the classical Gaussian weight. Our main result estimates the essential norms of $V_g$ in terms of an asymptotic upper bound of a quantity involving the inducing symbol g and the weight function, while the essential norms of $M_g$ and $I_g$ are shown to be comparable to their operator norms. As a means to prove our main results, we first characterized the compact composition operators acting on the spaces which is interest of its own.

APPROXIMATION OF FIXED POINTS AND THE SOLUTION OF A NONLINEAR INTEGRAL EQUATION

  • Ali, Faeem;Ali, Javid;Rodriguez-Lopez, Rosana
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.869-885
    • /
    • 2021
  • In this article, we define Picard's three-step iteration process for the approximation of fixed points of Zamfirescu operators in an arbitrary Banach space. We prove a convergence result for Zamfirescu operator using the proposed iteration process. Further, we prove that Picard's three-step iteration process is almost T-stable and converges faster than all the known and leading iteration processes. To support our results, we furnish an illustrative numerical example. Finally, we apply the proposed iteration process to approximate the solution of a mixed Volterra-Fredholm functional nonlinear integral equation.