• Title/Summary/Keyword: Volterra integral

Search Result 55, Processing Time 0.026 seconds

THE RELIABLE MODIFIED OF LAPLACE ADOMIAN DECOMPOSITION METHOD TO SOLVE NONLINEAR INTERVAL VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.323-334
    • /
    • 2017
  • In this paper, we propose a combined form for solving nonlinear interval Volterra-Fredholm integral equations of the second kind based on the modifying Laplace Adomian decomposition method. We find the exact solutions of nonlinear interval Volterra-Fredholm integral equations with less computation as compared with standard decomposition method. Finally, an illustrative example has been solved to show the efficiency of the proposed method.

A MIXED INTEGRAL EQUATION IN THE QUASI-STATIC DISPLACEMENT PROBLEM

  • Badr, Abdallah A.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.575-583
    • /
    • 2000
  • In this work, we solve the Fredholm-Volterra integral equation(FVIE) when the kernel takes a potential function form under given conditions. we represent this kernel in the Weber-sonin integral form.

A MATRIX FORMULATION OF THE MIXED TYPE LINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Fazeli, S.;Shahmorad, S.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1409-1420
    • /
    • 2011
  • In this paper we present an operational method for solving linear Volterra-Fredholm integral equations (VFIE). The method is con- structed based on three matrices with simple structures which lead to a simple and high accurate algorithm. We also present an error estimation and demonstrate accuracy of the method by numerical examples.

JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL

  • Yang, Yin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.247-262
    • /
    • 2016
  • We propose and analyze spectral and pseudo-spectral Jacobi-Galerkin approaches for weakly singular Volterra integral equations (VIEs). We provide a rigorous error analysis for spectral and pseudo-spectral Jacobi-Galerkin methods, which show that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

NUMERICAL SOLUTION OF A CLASS OF TWO-DIMENSIONAL NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

  • Tari, Abolfazl;Shahmorad, Sedaghat
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.463-475
    • /
    • 2012
  • In this work, we investigate solving two-dimensional nonlinear Volterra integral equations of the first kind (2DNVIEF). Here we convert 2DNVIEF to the two-dimensional linear Volterra integral equations of the first kind (2DLVIEF) and then we solve it by using operational approach of the Tau method. But for solving the 2DLVIEF we convert it to an equivalent equation of the second kind and then by giving some theorems we formulate the operational Tau method with standard base for solving the equation of the second kind. Finally, some numerical examples are given to clarify the efficiency and accuracy of presented method.

FREDHOLM-VOLTERRA INTEGRAL EQUATION WITH SINGULAR KERNEL

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.163-174
    • /
    • 1999
  • The purpose of this paper is to obtain the solution of Fredholm-Volterra integral equation with singular kernel in the space $L_2(-1, 1)\times C(0,T), 0 \leq t \leq T< \infty$, under certain conditions,. The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernel using the Toeplitz matrices. Also the error estimate is computed and some numerical examples are computed using the MathCad package.

ON A DISCUSSION OF NONLINEAR INTEGRAL EQUATION OF TYPE VOLTERRA-HAMMERSTEIN

  • El-Borai, M.M.;Abdou, M.A.;El-Kojok, M.M.
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Here, we consider the existence and uniqueness solution of nonlinear integral equation of the second kind of type Volterra-Hammerstein. Also, the normality and continuity of the integral operator are discussed. A numerical method is used to obtain a system of nonlinear integral equations in position. The solution is obtained, and many applications in one, two and three dimensionals are considered.

  • PDF