• Title/Summary/Keyword: Voltage-sensitive calcium channel

Search Result 24, Processing Time 0.023 seconds

Calcium Ions are Involved in Modulation of Melittin-induced Nociception in Rat: I. Effect of Voltage-gated Calcium Channel Antagonist

  • Shin, Hong-Kee;Lee, Kyung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.255-261
    • /
    • 2006
  • Melittin-induced nociceptive responses are mediated by selective activation of capsaicin-sensitive primary afferent fibers and are modulated by excitatory amino acid receptor, cyclooxygenase, protein kinase C and serotonin receptor. The present study was undertaken to investigate the peripheral and spinal actions of voltage-gated calcium channel antagonists on melittin-induced nociceptive responses. Changes in mechanical threshold and number of flinchings were measured after intraplantar (i.pl.) injection of melittin $(30\;{\mu}g/paw)$ into mid-plantar area of hindpaw. L-type calcium channel antagonists, verapamil [intrathecal (i.t.), 6 or $12\;{\mu}g$; i.pl.,100 & $200\;{\mu}g$; i.p., 10 or 30 mg], N-type calcium channel blocker, ${\omega}-conotoxin$ GVIA (i.t., 0.1 or $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) and P-type calcium channel antagonist, ${\omega}-agatoxin$ IVA (i.t., $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) were administered 20 min before or 60 min after i.pl. injection of melittin. Intraplantar pre-treatment and i.t. pre- or post-treatment of verapamil and ${\omega}-conotoxin$ GVIA dose-dependently attenuated the reduction of mechanical threshold, and melittin-induced flinchings were inhibited by i.pl. or i.t. pre-treatment of both antagonists. P-type calcium channel blocker, ${\omega}-agatoxin$ IVA, had significant inhibitory action on flinching behaviors, but had a limited effect on melittin-induced decrease in mechanical threshold. These experimental findings suggest that verapamil and ${\omega}-conotoxin$ GVIA can inhibit the development and maintenance of melittin-induced nociceptive responses.

Coordinated Spatial and Temporal Expression of Voltage-sensitive calcium Channel ${\alpha}_{1A}$ and $\beta_4$ Subunit mRNAs in Rat Cerebellum

  • Kim, Dong-Sun;Chin, Hemin
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.589-594
    • /
    • 1997
  • The neuronal voltage-sensitive calcium channels (VSCCs) are multisubunit complexes consisting of $\alpha_1,\;\alpha_2-\delta$ and $\beta$ subunits. Heterologous expression and biochemical studies have shown that the activity of VSCCs is regulated by their $\beta$ subunits in a $\beta$ subunit isoform-specific manner. To elucidate the $\beta$ subunit identity of the P/Q-type calcium channel encoded by an $\alpha_{1A}$ subunit, which is exclusively expressed in the Purkinje and granule cell of the cerebellum, we have examined the spatial and temporal expression patterns of $\beta$ subunits and compared them with those of $\alpha_{1A}$ subunit in the developing rat cerebellum. Reverse transcriptase- polymerase chain reaction (RT-PCR) and Northern blot analysis have shown that $\beta_4$ subunit mRNA was prominently expressed in the cerebellum and much more abundant than any other distinct $\beta$ subunits. RNase protection assay has further demonstrated that the expression of $\alpha_{1A}$ and $\beta_4$ subunits increased during cerebellar development, while the amount of $\beta_2$ and $\beta_3$ mRNAs did not significantly change. In addition, a $\beta_4$ transcript was present in cultured cerebellar granule cells, but not in astrocyte cells, and the level of $\beta_4$ mRNA expression increased gradually in vitro seen as in vivo. Based on the spatial and temporal expression patterns of $\beta_4$ subunit, we conclude that $\beta_4$ may predominantly associate, but probably not exclusively, with the $\alpha_{1A}$ subunit in rat cerebellar granule cells.

  • PDF

Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes (심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할)

  • Park, Choon-ok;Kim, Yang-mi;Haan, Jae-hee;Hong, Seong-geun
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

Ca2+-regulated ion channels

  • Cox, Daniel H.
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.635-646
    • /
    • 2011
  • Due to its high external and low internal concentration the $Ca^{2+}$ ion is used ubiquitously as an intracellular signaling molecule, and a great many $Ca^{2+}$-sensing proteins have evolved to receive and propagate $Ca^{2+}$ signals. Among them are ion channel proteins, whose $Ca^{2+}$ sensitivity allows internal $Ca^{2+}$ to influence the electrical activity of cell membranes and to feedback-inhibit further $Ca^{2+}$ entry into the cytoplasm. In this review I will describe what is understood about the $Ca^{2+}$ sensing mechanisms of the three best studied classes of $Ca^{2+}$-sensitive ion channels: Large-conductance $Ca^{2+}$-activated $K^+$ channels, small-conductance $Ca^{2+}$-activated $K^+$ channels, and voltage-gated $Ca^{2+}$ channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.

Mechanism for Gating of Gap Junction Channel. (간극결합채널의 개폐기전)

  • 오승훈
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.882-890
    • /
    • 2004
  • Gap junction is a membrane structure facilitating the direct transmission of several ions and small molecules between two cells. It is also called an 'intercellular channel' to distinguish it from other well-known cellular channels (e.g. sodium and potassium channels). Gap junction channels are not passive conduits, rather the ion channels modulated by several stimuli including pH, calcium ion, voltage, and a chemical modification (mainly known as phosphorylation). Among them, the effects of voltage on the gating of gap junction channels have been well studied. Gap junction channels are more sensitive to the transjunctional potential ($V_j$) between two cells rather than the membrane potential($V_m$) between inside and outside the cell. In this review, I will summarize the general properties of gap junction channel and discuss the gating mechanism for the gap channels.

Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation

  • Kwon, Jae Won;Jeon, Young Keul;Kim, Jinsung;Kim, Sang Jeong;Kim, Sung Joon
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.758-769
    • /
    • 2021
  • Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.

Calcium Channel Blockers Suppress the Responses of Rat Dorsal Horn Cell to Nociceptive Input (쥐 척수후각세포의 유해자극 반응에 대한 칼슘이온통로 차단제의 억제작용)

  • Kang, Sok-Han;Kim, Kee-Soon;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.625-637
    • /
    • 1997
  • Calcium ions are implicated in a variety of physiological functions, including enzyme activity, membrane excitability, neurotransmitter release, and synaptic transmission, etc. Calcium antagonists have been known to be effective for the treatment of exertional angina and essential hypertension. Selective and nonselective voltage-dependent calcium channel blockers also have inhibitory action on the acute and tonic pain behaviors resulting from thermal stimulation, subcutaneous formalin injection and nerve injury. This study was undertaken to investigate the effects of iontophoretically applied $Ca^{++}$ and its antagonists on the responses of WDR (wide dynamic range) cells to sensory inputs. The responses of WDR cells to graded electrical stimulation of the afferent nerve and also to thermal stimulation of the receptive field were recorded before and after iontophoretical application of $Ca^{++}$, EGTA, $Mn^{++}$, verapamil, ${\omega}-conotoxin$ GVIA, ${\omega}-conotoxin$ MVIIC and ${\omega}-agatoxin$ IVA. Also studied were the effects of a few calcium antagonists on the C-fiber responses of WDR cells sensitized by subcutaneous injection of mustard oil (10%). Calcium ions and calcium channel antagonists ($Mn^{++}$, verapamil, ${\omega}-conotoxin$ GVIA & ${\omega}-agatoxin$ IVA) current-dependently suppressed the C-fiber responses of WDR cells without any significant effects on the A-fiber responses. But ${\omega}-conotoxin$ MVIIC did not have any inhibitory actions on the responses of WDR cell to A-fiber, C-fiber and thermal stimulation. Iontophoretically applied EGTA augmented the WDR cell responses to C-fiber and thermal stimulations while spinal application of EGTA for about $20{\sim}30\;min$ strongly inhibited the C-fiber responses. The augmenting and the inhibitory actions of EGTA were blocked by calcium ions. The WDR cell responses to thermal stimulation of the receptive field were reduced by iontophoretical application of $Ca^{++}$, verapamil, ${\omega}-agatoxin$ IVA, and ${\omega}-conotoxin$ GVIA but not by ${\omega}-conotoxin$ MVIIC. The responses of WDR cells to C-fiber stimulation were augmented after subcutaneous injection of mustard oil (10%, 0.15 ml) into the receptive field and these sensitized C-fiber responses were strongly suppressed by iontophoretically applied $Ca^{++}$, verapamil, ${\omega}-conotoxin$ GVIA and ${\omega}-agatoxin$ IVA. These experimental findings suggest that in the rat spinal cord, L-, N-, and P-type, but not Q-type, voltage-sensitive calcium channels are implicated in the calcium antagonist-induced inhibition of the normal and the sensitized responses of WDR cells to C-fiber and thermal stimulation, and that the suppressive effect of calcium and augmenting action of EGTA on WDR cell responses are due to changes in excitability of the cell.

  • PDF

Studies on the Analgesic Mechanism of Capsaicin-capsaicin-evoked adenosine release and metabolism of capsaicin

  • 유은숙;박영호;이상섭
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.294-294
    • /
    • 1994
  • To investigate analgesic mechanism of capsaicin and its analogues (capsaicinoids), release of adenosine was measured by high performance liquid chromatography from dorsal spinal cord synaptosomes, Exposure of synaptosomes to K$\^$+/ and morphine produced a dose dependent release of adenosine in the presence of Ca$\^$++/. Capsaicin (0.1, 1, 10 M), and its analogues 6-paradol (1, 10 M), NE-19550 (1, 10, 100 M), DMNE (1, 10, 100 M) and KR 25018 (0.1, 1, 10 M) produced a dose dependent release of adenosine in the presence of Ca$\^$++/. Nifedipine, L-type voltage sensitive calcium channel blocker, inhibited K$\^$+/ (6, 12 mM)- and morphine (10 M)-evoked release of adenosine completely, but inhibited capsaicin, and capsaicinoids-evoked release of adenosine partially. Capsazepine, a novel capsaicin select ive antagonist, blocked only capsaicin and capsaicinoids induced release of adenosine. Therefore, the adenosine release by capsaicin and capsaicinoids having antinociceptive effects involve activation of capsaicin specific receptor and capsaicin sensitive Ca$\^$++/ channel.

  • PDF

Involvement of Adenosine in The Spinal Antinociception by Capsaicinoids (캅사이신 유사체들의 척수 진통작용을 매개하는 아데노신)

  • 유은숙;김옥희;손여원;정인경;이상섭
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.55-60
    • /
    • 1999
  • To investigate analgesic mechanism of capsaicin and its analogues (capaicinoids) adenosine release was measured by high performance liquid chromatography from rat spinal cord synaptosomes. Exposure of synaptosomes to $K^+$ and morphine produced a dose dependent release of adenosine in the presence of $Ca^{++}$. Capsaicin (0.1, 1, $10{\;}{\mu}M$), and its analogues: NE-19550 (1, 10, $100{\;}{\mu}M$), DMNE (1, 10, $100{\;}{\mu}M$) and KR 25018 (0.1, 1, $10{\;}{\mu}M$) produced a concentration dependent release of adenosine in the presence of $Ca^{++}$. Nifedifine, L-type voltage sensitive calcium channel blocker, inhibited $K^+$ (6, 12 mM)-and morphine ($10{\;}{\mu}M$)-evoked release of adenosine partially. Capsazepine, a novel capsaicin selective antagonist, blocked only capsaicin and capsaicinoids induced release of adenoside. Therefore, it is suggested that the adenosine release by capsaicin and capsaicinoids having antinociceptive effects involves actvation of capsaicin specific receptor and capsaicin sensitive $Ca^{++}$. channel.

  • PDF

Ginsenosides Inhibit N-, p-, arid Q-types but not L-type of $Ca^{2+}$ Channel in Bovine Chromaffin cells

  • Seok Chol;Jung, Se-Yeon;Kim, Hyun-Oh;Kim, Hack-Seang;Hyewhon Rhim;Kim, Seok-Chang;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.24 no.1
    • /
    • pp.18-22
    • /
    • 2000
  • In previous reports we have shown that ginsenosides inhibit high threshold voltage-dependent $Ca^{2+}$ channels in neuronal cells. However, these studies did not show whether ginsenosides-induced inhibition of $Ca^{2+}$ currents discriminates among the various $Ca^{2+}$ channel subtypes, although it is known that there are at least five different $Ca^{2+}$ channel subtypes in neuronal cells. In this study we investigated the effect of ginsenosides on high threshold voltage-dependent $Ca^{2+}$ channel subtypes using their selective $Ca^{2+}$ channel blockers nimodipine (L-type), $\omega$-conotoxin GVIA (N-type), or $\omega$-agatoxin IVA (P-type) in bovine chromaffin cells. We could observe that ginsenosides inhibited high threshold voltage-dependent $Ca^{2+}$ currents in a dose-dependent manner. The $IC_{50}$/ was about 120 $\mu$g/ml. Nimodipine had no effect on ginsenosides response. However, the effect of ginsenosides on $Ca^{2+}$ currents was reduced by $\omega$-conotoxin GVIA, $\omega$-agatoxin IVA, and mixture of nimodipine, $\omega$-contoxin GVIA, and $\omega$-agatoxin IVA. These data suggest that ginsenosides are negatively coupled to three types of calcium channels in bovine chromaffin cell, including an $\omega$-conotoxin GVIA-sensitive (N-type) channel, an $\omega$-agatoxin IVA-sensitive (P-type) channel and nimodipine/$\omega$-conotoxin GVIA/$\omega$-agatoxin IVA-resistant (presumptive Q-type) channel.Q-type) channel.

  • PDF