DOI QR코드

DOI QR Code

Mechanism for Gating of Gap Junction Channel.

간극결합채널의 개폐기전

  • 오승훈 (단국대학교 의과대학 생리학교실)
  • Published : 2004.10.01

Abstract

Gap junction is a membrane structure facilitating the direct transmission of several ions and small molecules between two cells. It is also called an 'intercellular channel' to distinguish it from other well-known cellular channels (e.g. sodium and potassium channels). Gap junction channels are not passive conduits, rather the ion channels modulated by several stimuli including pH, calcium ion, voltage, and a chemical modification (mainly known as phosphorylation). Among them, the effects of voltage on the gating of gap junction channels have been well studied. Gap junction channels are more sensitive to the transjunctional potential ($V_j$) between two cells rather than the membrane potential($V_m$) between inside and outside the cell. In this review, I will summarize the general properties of gap junction channel and discuss the gating mechanism for the gap channels.

간극결합(gap junction)은 이웃하는 두 세포사이에 형성된 막 구조물로 이를 통하여 각종 이온들과 여러 가지 분자들이 통과한다. 일반적으로 알려진 세포의 이온채널(예를 들어 $Na^{+}$ 이온채널과$K^+$이온채널)과 구별하여 두 세포사이에 형성된 간극결합을 세포간 채널(intercellular channel)이라고도 부른다. 간극결합채널(gap junction channel)은 단순히 수동적으로 열려있는 통로가 아니라 여러 가지 자극 즉 pH, 칼슘이온(calcium ion), 전압(voltage), 그리고 화학적인 변형(주로 인산화, phosphorylation)에 의해서 개폐(gating, opening and closing)가 조절되는 이온채널이다. 그 가운데서도 전압에 의한 간극결합채널 개폐 변화가 가장 많이 연구되었다. 세포안과 바깥에 형성된 전압차이(membrane potential, $V_m$) 보다는 주로 두 세포 사이에 형성된 전압차이(transjunctional voltage, $V_j$)에 의해서 간극결합채널은 민감하게 반응한다. 본 총설에서는 간극결합채널의 일반적인 특성을 정리해보고 전압-의존적인(voltage-dependent) 채널개폐에 관한 기전을 논의하고자 한다.

Keywords

References

  1. Auerbach, A. A. and M. V. L. Bennett. 1969. A rectifying electrotonic synapse in the central nervous system of a vertebrate. J. Gen. Physiol. 53, 211-237 https://doi.org/10.1085/jgp.53.2.211
  2. Bennett, M. V. L. 2000. Seeing is relieving: electrical synapses between visualized neurons. Nat. Neurosci. 3, 7-9 https://doi.org/10.1038/71082
  3. Bergoffen, J., S. S. Scherer, S. Wang, M. O. Scott, L. J. Bone, D. L. Paul, K. Chen, M. W. Lensch, P. E. Chance and K. H. Fischbeck. 1993. Connexin mutations in X- linked Charcot-Marie-Tooth disease. Science 262, 2039-2042 https://doi.org/10.1126/science.8266101
  4. Bevans, C. G., M. Kordel, S. K. Rhee and A. L. Harris. 1998. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J. Biol. Chem. 273, 2808-2816 https://doi.org/10.1074/jbc.273.5.2808
  5. Beyer, E. C., D. L. Paul and D. A. Goodenough. 1987. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol. 105, 2621-2629 https://doi.org/10.1083/jcb.105.6.2621
  6. Brink, P. R., K. Cronin, K. Banach, E. Peterson, E. M. Westphale, K. H. Seul, S. V. Ramanan and E. C. Beyer. 1997. Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am. J. Physiol. 273(C1), 386-396
  7. Brink, P. R. and M. M. Dewey. 1980. Evidence for fixed charge in the nexus. Nature 285, 101-102 https://doi.org/10.1038/285101a0
  8. Britz-Cunningham, S. H., M. M. Shah, C. W. Zuppan and W. H. Fletcher. 1995. Mutations of the connexin43 gap- junction gene in patients with heart malformation and defects in laterality. New Engl. J. Med. 332, 1323-1329 https://doi.org/10.1056/NEJM199505183322002
  9. Bukauskas, F. F., C. Elfgang, K. Willecke and R. Weingart. 1995. Heterotypic gap junction channels (connexin26- connexin32) violate the paradigm of unitary conductance. Pflugers Arch. 429, 870-872 https://doi.org/10.1007/BF00374812
  10. Cruikshank, S. J., M. Hopperstad, M. Younger, B. W. Connors, D. C. Spray and M. Srinivas. 2004. Potent block of Cx36 and cx50 gap junction channels by mefloquine. Proc. Natl. Acad. Sci. USA 101, 12364-12369 https://doi.org/10.1073/pnas.0402044101
  11. Dahl, G., T. Miller, D. Paul, R. Voellmy and R. Werner. 1987. Expression of functional cell-cell channels from cloned rat liver gap junction complementary DNA. Science 236, 1290-1293 https://doi.org/10.1126/science.3035715
  12. Ebihara, L., X. Xu, C. Oberti, E. C. Beyer and V. M. Berthoud. 1999. Co-expression of lens fiber connexins mod ifies hemi-gap-junctional channel behavior. Biophys. J. 76, 198-206 https://doi.org/10.1016/S0006-3495(99)77189-4
  13. Eskandari, S. and G. A. Zampighi. 2000. Properties of connexin50 hemichannels expressed in Xenopus laevis oocytes, pp. 369-388, In Peracchia, C. (ed), Gap Junctions: Molecular Basis of Cell Communication in Health and Disease, Academic Press, San Diego
  14. Flagg-Newton, J., I. Simpson and W. R. Loewenstein. 1979. Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205, 404-407 https://doi.org/10.1126/science.377490
  15. Furshpan E. J. and D. D. Potter. 1959. Transmission at the giant motor synapses of the crayfish. J. Physiol. 145, 289- 325 https://doi.org/10.1113/jphysiol.1959.sp006143
  16. Gong, X. H., E. Li, G. Klier, Q. L. Huang, Y. Wu, H. Lei, N. M. Kumar, J. Horwitz and N. B. Gilula. 1997. Disruption of alpha (3) connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91, 833-843 https://doi.org/10.1016/S0092-8674(00)80471-7
  17. Guldenagel, M., J. Ammernuller, A. Feigenspan, B. Teubner, J. Degen, G. Sohl, K. Willecke and R. Weiler. 2001. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J. Neurosci. 21, 6036- 6044
  18. Harris, A. L. 2001. Emerging issues of connexin channels: biophysics fills the gap. Quart. Rev. Biophys. 34, 325-472
  19. Harris, A. L., D. C. Spray and M. V. L. Bennett. 1981. Kinetic properties of a voltage-dependent junctional conductance. J. Gen. Physiol. 77, 95-117 https://doi.org/10.1085/jgp.77.1.95
  20. Harris, A. L., A. Walter, D. Paul, D. A. Goodenough and J. Zimmerberg. 1992. Ion channels in single bilayers induced by rat connexin32. Brain Res. Mol. Brain Res. 15, 269-280 https://doi.org/10.1016/0169-328X(92)90118-U
  21. Hertzberg, E. L, J. C. Saez, R. A. Corpina, C. Roy and J. A. Kessler. 2000. Use of antibodies in the analysis of connexin 43 turnover and phosphorylation. Methods 20, 129- 139 https://doi.org/10.1006/meth.1999.0931
  22. Hossain, M. Z., P. Ao and A. L. Boynton. 1998. Rapid disruption of gap junctional communication and phosphorylation of connexin43 by platelet-derived growth factor in T51B rat liver epithelial cells expressing platelet-derived growth factor receptor. J. Cell Physiol. 174, 66-77 https://doi.org/10.1002/(SICI)1097-4652(199801)174:1<66::AID-JCP8>3.0.CO;2-E
  23. Hossain, M. Z., A. B. Jagdale, P. Ao, A. Kazlauskas and A. L. Boynton. 1999. Disruption of gap junctional communication by the platelet-derived growth factor is mediated via multiple signaling pathways. J. Biol. Chem. 274, 10489- 10496 https://doi.org/10.1074/jbc.274.15.10489
  24. Hu, X. G. and G. Dahl. 1999. Exchange of conductance and gating properties between gap junction hemichannels. FEBS Lett. 451, 113-117 https://doi.org/10.1016/S0014-5793(99)00558-X
  25. Jiang, J. X. and D. A. Goodenough. 1996. Heteromeric connexons in lens gap junction channels. Proc. Natl. Acad. Sci. USA 93, 1287-1291 https://doi.org/10.1073/pnas.93.3.1287
  26. Kelsell, D. P., J. Dunlop, H. P. Stevens, N. J. Lench, J. N. Liang, R. F. Bueller and I. M. Leigh. 1997. Connexin26 mutations in hereditary nonsyndromic sensorineural deafness. Nature 387, 80-83 https://doi.org/10.1038/387080a0
  27. Kumar, N. M., D. S. Friend and N. B. Gilula. 1995. Synthesis and assembly of human beta 1 gap junctions in BHK cells by DNA transfection with the human beta 1 cDNA. J. Cell Sci. 108, 3725-3734
  28. Kumar, N. M. and N. B. Gilula. 1996. The gap junction communication channel. Cell 84, 381-388 https://doi.org/10.1016/S0092-8674(00)81282-9
  29. Kuraoka, A., H. Iida, T. Hatae, Y. Shibata, M. Itoh and T. Kurita. 1993. Localization of gap junction proteins, connexins 32 and 26, in rat and guinea pig liver as revealed by quick-freeze, deep-etch immunoelectron microscopy. J. Histochem. Cytochem. 41, 971-980 https://doi.org/10.1177/41.7.8390496
  30. Lau, A. F., M. Y. Kanemitsu, W. E. Kurata, S. Danesh and A. L. Boynton. 1992. Epidermal growth factor disrupts gap- junctional communication and induces phosphorylation of connexin43 on serine. Mol. Biol. Cell 3, 865-874 https://doi.org/10.1091/mbc.3.8.865
  31. Massas, R., R. Korenstein and D. Benayahu. 1998. Estrogen modulation of osteoblastic cell-to-cell communication. J. Cell Biochem. 69, 282-290 https://doi.org/10.1002/(SICI)1097-4644(19980601)69:3<282::AID-JCB6>3.0.CO;2-N
  32. Moorby, C. D. and E. Gherardi. 1999. Expression of a Cx43 deletion mutant in 3T3 A31 fibroblasts prevents PDGF- induced inhibition of cell communication and suppresses cell growth. Exp. Cell Res. 249, 367-376 https://doi.org/10.1006/excr.1999.4485
  33. Moreno, A. P., M. B. Rook, G. I. Fishman and D. C. Spray. 1994. Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys. J. 67, 113-119 https://doi.org/10.1016/S0006-3495(94)80460-6
  34. Musil, L. S. and D. A. Goodenough. 1993. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74, 1065-1077 https://doi.org/10.1016/0092-8674(93)90728-9
  35. Oh, S., C. K. Abrams, V. K. Verselis and T. A. Bargiello. 2000. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J. Gen. Physiol. 116, 13-31 https://doi.org/10.1085/jgp.116.1.13
  36. Oh, S., Y. Ri, M. V. Bennett, E. B. Trexler, V. K. Verselis and T. A. Bargiello. 1997. Changes i V.ermeability caused by connexin A. mutations underlie X-linked Charcot- Marie-Tooth disease. Neuron 19, 927-938 https://doi.org/10.1016/S0896-6273(00)80973-3
  37. Oh, S., S. Rivkin, Q. Tang, V. K. Verselis and T. A. Bargiello. 2004. Determinants of gating polarity of a connexin 32 hemichannel. Biophys. J. 87, 912-928 https://doi.org/10.1529/biophysj.103.038448
  38. Oh, S., J. B. Rubin, M. V. Bennett, V. K. Verselis and T. A. Bargiello. 1999. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J. Gen. Physiol. 114, 339- 364 https://doi.org/10.1085/jgp.114.3.339
  39. Patino, R. and H. Kagawa. 1999. Regulation of gap junctions and oocyte maturational competence by gonadotropin and insulin-like growth factor-I in ovarian follicles of red seabream. Gen. Comp. Endocrinol. 115, 454-462 https://doi.org/10.1006/gcen.1999.7341
  40. Paul, D. L. 1986. Molecular cloning of cDNA for rat liver gap junction protein. J. Cell Biol. 103, 123-134 https://doi.org/10.1083/jcb.103.1.123
  41. Phelan, P., L. A. Stebbings, R. A. Baines, J. P. Bacon, J. A. Davies and C. Ford. 1998. Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes. Nature 391, 181-184 https://doi.org/10.1038/34426
  42. Peracchia, C., X. Wang, L. Li and L. L. Peracchia. 1996. Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytes. Pflugers Arch. 431, 379-387 https://doi.org/10.1007/BF02207275
  43. Purnick, P. E. M., S. Oh, C. K. Abrams, V. K. Verselis and T. A. Bargiello. 2000. Reversal of the gating polarity of gap junctions by negative charge substitution in the N-terminus of connexin 32. Biophys. J. 79, 2403-2415 https://doi.org/10.1016/S0006-3495(00)76485-X
  44. Reaume, A., P. A. De Sousa, S. Kulkarni, B. L. Langille, D. Zhu, T. C. Davies, S. C. Juneja, G. M. Kidder and J. Rossant. 1995. Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831-1834 https://doi.org/10.1126/science.7892609
  45. Rubin, J. B., V. K. Verselis, M. V. Bennett and T. A. Bargiello. 1992. A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc. Natl. Acad. Sci. USA 89, 3820-3824 https://doi.org/10.1073/pnas.89.9.3820
  46. Rubin, J. B., V. K. Verselis, M. V. Bennett and T. A. Bargiello. 1992. Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys. J. 62, 183-193 https://doi.org/10.1016/S0006-3495(92)81804-0
  47. Simon, A. M., D. A. Goodenough, E. Li and D. L. Paul. 1997. Female infertility in mice lacking connexin 37. Nature 385, 525-529 https://doi.org/10.1038/385525a0
  48. Simpson, I., B. Rose and W. R. Loewenstein. 1977. Size limit of molecules permeating the junctional membrane channels. Science 195, 294-296 https://doi.org/10.1126/science.831276
  49. Sohl, G. and K. Willecke. 2004. Gap junctions and the connexin protein family. Cardiovas. Res. 62, 228-232 https://doi.org/10.1016/j.cardiores.2003.11.013
  50. Stauffer, K. A. 1995. The gap junction proteins beta 1-connexin (connexin-32) and beta 2-connexin (connexin-26) can form heteromeric hemichannels. J. Biol. Chem. 270, 6768- 6772.
  51. Trexler, E. B., M. V. Bennett, T. A. Bargiello and V. K. Verselis. 1996. Voltage gating and permeation in a gap junction hemichannel. Proc. Natl. Acad. Sci. USA 93, 5836- 5841 https://doi.org/10.1073/pnas.93.12.5836
  52. Trexler, E. B., F. F. Bukauskas, M. V. Bennett, T. A. Bargiello and V. K. Verselis. 1999. Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J. Gen. Physiol. 113, 721-742 https://doi.org/10.1085/jgp.113.5.721
  53. Unger, V. M., N. M. Kumar, N. B. Gilula and M. Yeager. 1999. Three-dimensional structure of a recombinant gap junction membrane channel. Science 283, 1176-1180 https://doi.org/10.1126/science.283.5405.1176
  54. Valiunas, V. and R. Weingart. 2000. Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflugers Arch. 440, 366-379 https://doi.org/10.1007/s004240000294
  55. Veenstra, R. D. 1996. Size and selectivity of gap junction channels formed from different connexins. J. Bioenerg. Biomembr. 28, 327-337 https://doi.org/10.1007/BF02110109
  56. Verselis, V. K., C. S. Ginter and T. A. Bargiello. 1994. Opposite voltage gating polarities of two closely related connexins. Nature 368, 348-351 https://doi.org/10.1038/368348a0
  57. Verselis, V. K. and R. D. Veenstra. 2000. Gap junction channels: permeability and voltage gating, pp. 129-192, In Hertzberg, E. L. (ed.), Advanced Molecular and Cell Biology, Vol. 30, JAI Press Inc., Stamford
  58. Waltzman, M. N. 1996. Biophysical properties of rat connexin37 stably expressed in N2A cell lines. Ph.D. thesis. Albert Einstein College of Medicine of Yeshiva University, New York
  59. Warn-Cramer, B. J., G. T. Cottrell, J. M. Burt and A. F. Lau. 1998. Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J. Biol. Chem. 273, 9188-9196 https://doi.org/10.1074/jbc.273.15.9188
  60. Warn-Cramer, B. J., P. D. Lampe, W. E. Kurata, M. Y. Kanemitsu, L. W. Loo, W. Eckhart and A. F. Lau. 1996. Characterization of the mitogen-activated protein kinase phosphorylation sites on the connexin-43 gap junction protein. J. Biol. Chem. 271, 3779-3786 https://doi.org/10.1074/jbc.271.7.3779