• 제목/요약/키워드: Voltage-gated $Ca^{2+}$ channels

검색결과 26건 처리시간 0.02초

Effect of Imipramine on Calcium Utilization of Single Cells Isolated from Canine Detrusor

  • Shim, Ho-Shik;Choi, Hyoung-Chul;Jeong, Young-Sook;Kim, Jong-Ho;Lee, Kwang-Youn;Sohn, Uy-Dong;Ha, Jeoung-Hee;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권4호
    • /
    • pp.439-445
    • /
    • 1999
  • This study is to investigate the mechanism of inhibitory effect of imipramine on the calcium utilization in single cells isolated from canine detrusor. 2 mm thick smooth muscle chops were incubated in 0.12% collagenase solution at $36^{circ}C,$ and aerated with 95% $O_2/5%\;CO_2,$ and then cell suspension was examined. Acetylcholine (ACh) evoked a concentration-dependent contraction of the isolated detrusor cells in normal physiologic salt solution (PSS), and the ACh-induced contraction was significantly inhibited by imipramine. In $Ca^{2+}-free$ PSS, ACh-induced contraction was less than those in normal PSS and it was not affected by the pretreatment with imipramine. $Ca^{2+}-induced$ contraction in $Ca^{2+}-free$ PSS was supressed by imipramine, but addition of A 23187, a calcium ionophore, overcomed the inhibitory effect of imipramine. High potassium-depolarization (40 mM KCl) evoked cell contraction, which was inhibited by imipramine. Caffeine, a releasing agent of the stored $Ca^{2+}$ from sarcoplasmic reticulum, evoked a contraction of the cells that was not blocked by the pretreatment with imipramine. These results suggest that imipramine inhibits the influx of calcium in the detrusor cells through both the receptor-operated- and voltage-gated-calcium channels, but does not affect the release of calcium from intracellular storage site.

  • PDF

흰쥐 대동맥에서 Trazodone의 혈관이완 작용기전 (Mechanism of the relaxant action of Trazodone in isolated rat aorta)

  • 김상진;김정곤;김진상
    • 대한수의학회지
    • /
    • 제43권4호
    • /
    • pp.587-595
    • /
    • 2003
  • The aim of this study was to investigate trazodone's effect on vasorelaxation and blood pressure lowering and to examine its underlying mechanism of action in isolated thoracic aorta and anesthesized rats. Precontracted aortic rings with high KCl were relaxed with trazodone, at concentrations of $50{\mu}M$ or greater. However, precontracted rings with phenylephrine (PE) were relaxed with trazodone, at concentrations of $0.03{\mu}M$ or greater, in a concentration-dependent manner. These relaxant effects of trazodone on endothelium intact rat aortic rings were significantly greater than those on denuded rings. The trazodone-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-L-arginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a $Ca^{2+}$-activated $K^+$ channel blocker, tetrabutylammonium (TBA), a $Ca^{2+}$ channel blocker, nifedipine, $Na^+$ channel blockers, lidocaine and procaine, and removal of extracellular $Na^+$, but not by aminoguanidine, 2-nitro-4-carboxyphenyl-n, n-diphenylcarbamate (NCDC), indomethacin, glibenclamide and clotrimazole. In vivo, infusion of trazodone elicited significant decrease in arterial blood pressure. Trazodone-induced decrease in blood pressure was markedly inhibited by pretreatment of intravenous injection of saponin, L-NNA, methylene blue, TBA, lidocaine or nifedipine. These findings suggest that the endothelium-dependent relaxation and decrease in blood pressure induced by trazodone is mediated by release of NO from the endothelium, activation of TBA-sensitive $Ca^{2+}$-activated $K^+$ channels or inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Mitochondrial Ca2+ Uptake Relieves Palmitate-Induced Cytosolic Ca2+ Overload in MIN6 Cells

  • Ly, Luong Dai;Ly, Dat Da;Nguyen, Nhung Thi;Kim, Ji-Hee;Yoo, Heesuk;Chung, Jongkyeong;Lee, Myung-Shik;Cha, Seung-Kuy;Park, Kyu-Sang
    • Molecules and Cells
    • /
    • 제43권1호
    • /
    • pp.66-75
    • /
    • 2020
  • Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.

Eugenol Inhibits ATP-induced P2X Currents in Trigeminal Ganglion Neurons

  • Li, Hai Ying;Lee, Byung-Ky;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권6호
    • /
    • pp.315-321
    • /
    • 2008
  • Eugenol is widely used in dentistry to relieve pain. We have recently demonstrated voltage-gated $Na^+$ and $Ca^{2+}$ channels as molecular targets for its analgesic effects, and hypothesized that eugenol acts on $P2X_3$, another pain receptor expressed in trigeminal ganglion (TG), and tested the effects of eugenol by whole-cell patch clamp and $Ca^{2+}$ imaging techniques. In the present study, we investigated whether eugenol would modulate 5'-triphosphate (ATP)-induced currents in rat TG neurons and $P2X_3$-expressing human embryonic kidney (HEK) 293 cells. ATP-induced currents in TG neurons exhibited electrophysiological properties similar to those in HEK293 cells, and both ATP- and $\alpha$, $\beta$-meATP-induced currents in TG neurons were effectively blocked by TNP-ATP, suggesting that $P2X_3$ mediates the majority of ATP-induced currents in TG neurons. Eugenol inhibited ATP-induced currents in both capsaicin-sensitive and capsaicin-insensitive TG neurons with similar extent, and most ATP-responsive neurons were IB4-positive. Eugenol inhibited not only $Ca^{2+}$ transients evoked by $\alpha$, $\beta$-meATP, the selective $P2X_3$ agonist, in capsaicin-insensitive TG neurons, but also ATP-induced currents in $P2X_3$-expressing HEK293 cells without co-expression of transient receptor potential vanilloid 1 (TRPV1). We suggest, therefore, that eugenol inhibits $P2X_3$ currents in a TRPV1-independent manner, which contributes to its analgesic effect.

[$Ca^{2+}-induced$ $Ca^{2+}$ Release from Sarcoplasmic Reticulum Negatively Regulates Myocytic ANP Release in Beating Rabbit Atria

  • Li, Dan;Quan, He Xiu;Wen, Jin-Fu;Jin, Jing-Yu;Park, Sung-Hun;Kim, Sun-Young;Kim, Sung-Zoo;Cho, Kyung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권2호
    • /
    • pp.87-94
    • /
    • 2005
  • It is not clear whether $Ca^{2+}-induced$ $Ca^{2+}$ release from the sarcoplasmic reticulum (SR) is involved in the regulation of atrial natriuretic peptide (ANP) release. Previously, we have shown that nifedipine increased ANP release, indicating that $Ca^{2+}$ entry via voltage-gated L-type $Ca^{2+}$ channel activation decreases ANP release. The purpose of the present study was two-fold: to define the role of SR $Ca^{2+}$ release in the regulation of ANP release and whether $Ca^{2+}$ entry via L-type $Ca^{2+}$ channel is prerequisite for the SR-related effect on ANP release. Experiments were performed in perfused beating rabbit atria. Ryanodine, an inhibitor of SR $Ca^{2+}$ release, increased atrial myocytic ANP release ($8.69{\pm}3.05$, $19.55{\pm}1.09$, $27.31{\pm}3.51$, and $18.91{\pm}4.76$% for 1, 2, 3, and $6{\mu}M$ ryanodine, respectively; all P<0.01) with concomitant decrease in atrial stroke volume and pulse pressure in a dose-dependent manner. In the presence of thapsigargin, an inhibitor of SR $Ca^{2+}$ pump, ryanodine-induced increase in ANP release was not observed. Thapsigargin attenuated ryanodine-induced decrease in atrial dynamic changes. Blockade of L-type $Ca^{2+}$ channel with nifedipine abolished ryanodine-induced increase in ANP release ($0.69{\pm}5.58$% vs. $27.31{\pm}3.51$%; P<0.001). In the presence of thapsigargin and ryanodine, nifedipine increased ANP release and decreased atrial dynamics. These data suggest that $Ca^{2+}$-induced $Ca^{2+}$ release from the SR is inversely involved in the regulation of atrial myocytic ANP release.

Mechanism of L-NAME-Resistant Endothelium-Dependent Relaxation Induced by Acetylcholine in Rabbit Renal Artery

  • Yeon, Dong-Soo;Ahn, Duck-Sun;Lee, Young-Ho;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.471-477
    • /
    • 2000
  • In the rabbit renal artery, acetylcholine $(ACh,\;1\;nM{\sim}10\;{\mu}M)$ induced endothelium-dependent relaxation of arterial rings precontracted with norepinephrine $(NE,\;1\;{\mu}M)$ in a dose-dependent manner. $N^G-nitro- L-arginine$ (L-NAME, 0.1 mM), an inhibitor of NO synthase, or ODQ $(1\;{\mu}M),$ a soluble guanylate cyclase inhibitor, partially inhibited the ACh-induced endothelium-dependent relaxation. The ACh-induced relaxation was abolished in the presence of 25 mM KCl and L-NAME. The cytochrome P450 inhibitors, 7- ethoxyresorufin $(7-ER,\;10\;{\mu}M),$ miconazole $(10\;{\mu}M),$ or 17-octadecynoic acid $(17-ODYA,\;10\;{\mu}M),$ failed to inhibit the ACh-induced relaxation in the presence of L-NAME. 11,12-epoxyeicosatrienoic acid $(11,12-EET,\;10\;{\mu}M)$ had no relaxant effect. The ACh-induced relaxation observed in the presence of L-NAME was significantly reduced by a combination of iberiotoxin $(0.3\;{\mu}M)$ and apamin $(1\;{\mu}M),$ and almost completely blocked by 4-aminopyridine (5 mM). The ACh-induced relaxation was antagonized by $P_{2Y}$ receptor antagonist, cibacron blue $(10\;and\;100\;{\mu}M),$ in a dose-dependent manner. Furthermore, 2-methylthio-ATP (2MeSATP), a potent $P_{2Y}$ agonist, induced the endothelium-dependent relaxation, and this relaxation was markedly reduced by either the combination of iberiotoxin and apamin or by cibacron blue. In conclusion, in renal arteries isolated from rabbit, ACh produced non-NO relaxation that is mediated by an EDHF. The results also suggest that ACh may activate the release of ATP from endothelial cells, which in turn activates $P_{2Y}$ receptor on the endothelial cells. Activation of endothelial $P_{2Y}$ receptors induces a release of EDHF resulting in a vasorelaxation via a mechanism that involves activation of both the voltage-gated $K^+$ channels and the $Ca^{2+}-activated\;K^+\;channels$. The results further suggest that EDHF does not appear to be a cytochrome P450 metabolite.

  • PDF