• Title/Summary/Keyword: Voltage-dependent $K^+$ channel

Search Result 236, Processing Time 0.024 seconds

Electrical characteristics of voltage-dependent $Ca^{++}$ channel in rat chromaffin cell. (흰쥐 부신수질 세포에서 voltage-dependent $Ca^{++}$ 채널의 전기적 특성에 관한 연구)

  • Goo, Yong-Sook;Lee, Tae-Soo;Cha, Eun-Jong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.142-145
    • /
    • 1994
  • Calcium(Ca) ion plays an important role to trigger the secretion of important neurotransmitters. Since Ca ion flows into the cell thru the ion selective channel, the conductance of which depends on the transmembrane potential, the voltage-dependent characteristic of Ca ion channel is crucial to elucidate the stimulus-secretion coupling of exocytosis. The present study measured the Ca ion currents thru a whole-cell configuration patch at the transmembrane potential clamped at various desired levels in the rat chromaffin cell. The resultant current-voltage relationship was differentiated to obtain dynamic conductance at each clamped voltage. Based on these measured data, five numerical parameters were extracted to reveal electrical properties of Ca ion inflow process thru the voltage-gated channel. The present study can be applied to comparing the electrical characteristics of Ca channel under different experimental conditions. Also, further study is warranted to model the conformational changes of the channel molecules.

  • PDF

Analysis of Doping Profile Dependent Threshold Voltage for DGMOSFET Using Gaussian Function

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.310-314
    • /
    • 2011
  • This paper has presented doping profile dependent threshold voltage for DGMOSFET using analytical transport model based on Gaussian function. Two dimensional analytical transport model has been derived from Poisson's equation for symmetrical Double Gate MOSFETs(DGMOSFETs). Threshold voltage roll-off is very important short channel effects(SCEs) for nano structures since it determines turn on/off of MOSFETs. Threshold voltage has to be constant with decrease of channel length, but it shows roll-off due to SCEs. This analytical transport model is used to obtain the dependence of threshold voltage on channel doping profile for DGMOSFET profiles. Also we have analyzed threshold voltage for structure of channel such as channel length and gate oxide thickness.

Extraction and Modeling of High-Temperature Dependent Capacitance-Voltage Curve for RF MOSFETs (고온 종속 RF MOSFET 캐패시턴스-전압 곡선 추출 및 모델링)

  • Ko, Bong-Hyuk;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.10
    • /
    • pp.1-6
    • /
    • 2010
  • In this paper, RF Capacitance-Voltage(C-V) curve of short-channel MOSFET has been extracted from the room temperature to $225^{\circ}C$ using a RF method based on measured S-parameter data, and its high-temperature dependent characteristics are empirically modeled. It is observed that the voltage shift according to the variation of temperature in the weak inversion region of RF C-V curves is lower than the threshold voltage shift, but it is confirmed that this phenomenon is unexplainable with a long-channel theoretical C-V equation. The new empirical equation is developed for high-temperature dependent modeling of short-channel MOSFET C-V curves. The accuracy of this equation is demonstrated by observing good agreements between the modeled and measured C-V data in the wide range of temperature. It is also confirmed that the channel capacitance decreases with increasing temperature at high gate voltage.

Inhibition of voltage-dependent K+ current in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic drug propafenone

  • An, Jin Ryeol;Li, Hongliang;Seo, Mi Seon;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.597-605
    • /
    • 2018
  • In this study, we demonstrated the inhibitory effect of the Class Ic antiarrhythmic agent propafenone on voltage-dependent $K^+$ (Kv) channels using freshly isolated coronary artery smooth muscle cells from rabbits. The Kv current amplitude was progressively inhibited by propafenone in a dose-dependent manner, with an apparent $IC_{50}$ value of $5.04{\pm}1.05{\mu}M$ and a Hill coefficient of $0.78{\pm}0.06$. The application of propafenone had no significant effect on the steady-state activation and inactivation curves, indicating that propafenone did not affect the voltage-sensitivity of Kv channels. The application of train pulses at frequencies of 1 or 2 Hz progressively increased the propafenone-induced inhibition of the Kv current. Furthermore, the inactivation recovery time constant was increased after the application of propafenone, suggesting that the inhibitory action of propafenone on Kv current is partially use-dependent. Pretreatment with Kv1.5, Kv2.1 or Kv7 inhibitor did not change the inhibitory effect of propafenone on the Kv current. Together, these results suggest that propafenone inhibits the vascular Kv channels in a dose- and use-dependent manner, regardless of $Na^+$ channel inhibition.

Inhibition of voltage-dependent K+ channels by antimuscarinic drug fesoterodine in coronary arterial smooth muscle cells

  • Park, Seojin;Kang, Minji;Heo, Ryeon;Mun, Seo-Yeong;Park, Minju;Han, Eun-Taek;Han, Jin-Hee;Chun, Wanjoo;Park, Hongzoo;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.397-404
    • /
    • 2022
  • Fesoterodine, an antimuscarinic drug, is widely used to treat overactive bladder syndrome. However, there is little information about its effects on vascular K+ channels. In this study, voltage-dependent K+ (Kv) channel inhibition by fesoterodine was investigated using the patch-clamp technique in rabbit coronary artery. In whole-cell patches, the addition of fesoterodine to the bath inhibited the Kv currents in a concentration-dependent manner, with an IC50 value of 3.19 ± 0.91 μM and a Hill coefficient of 0.56 ± 0.03. Although the drug did not alter the voltage-dependence of steady-state activation, it shifted the steady-state inactivation curve to a more negative potential, suggesting that fesoterodine affects the voltage-sensor of the Kv channel. Inhibition by fesoterodine was significantly enhanced by repetitive train pulses (1 or 2 Hz). Furthermore, it significantly increased the recovery time constant from inactivation, suggesting that the Kv channel inhibition by fesoterodine is use (state)-dependent. Its inhibitory effect disappeared by pretreatment with a Kv 1.5 inhibitor. However, pretreatment with Kv2.1 or Kv7 inhibitors did not affect the inhibitory effects on Kv channels. Based on these results, we conclude that fesoterodine inhibits vascular Kv channels (mainly the Kv1.5 subtype) in a concentration- and use (state)-dependent manner, independent of muscarinic receptor antagonism.

Ginsenosides Inhibit N-, p-, arid Q-types but not L-type of $Ca^{2+}$ Channel in Bovine Chromaffin cells

  • Seok Chol;Jung, Se-Yeon;Kim, Hyun-Oh;Kim, Hack-Seang;Hyewhon Rhim;Kim, Seok-Chang;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.24 no.1
    • /
    • pp.18-22
    • /
    • 2000
  • In previous reports we have shown that ginsenosides inhibit high threshold voltage-dependent $Ca^{2+}$ channels in neuronal cells. However, these studies did not show whether ginsenosides-induced inhibition of $Ca^{2+}$ currents discriminates among the various $Ca^{2+}$ channel subtypes, although it is known that there are at least five different $Ca^{2+}$ channel subtypes in neuronal cells. In this study we investigated the effect of ginsenosides on high threshold voltage-dependent $Ca^{2+}$ channel subtypes using their selective $Ca^{2+}$ channel blockers nimodipine (L-type), $\omega$-conotoxin GVIA (N-type), or $\omega$-agatoxin IVA (P-type) in bovine chromaffin cells. We could observe that ginsenosides inhibited high threshold voltage-dependent $Ca^{2+}$ currents in a dose-dependent manner. The $IC_{50}$/ was about 120 $\mu$g/ml. Nimodipine had no effect on ginsenosides response. However, the effect of ginsenosides on $Ca^{2+}$ currents was reduced by $\omega$-conotoxin GVIA, $\omega$-agatoxin IVA, and mixture of nimodipine, $\omega$-contoxin GVIA, and $\omega$-agatoxin IVA. These data suggest that ginsenosides are negatively coupled to three types of calcium channels in bovine chromaffin cell, including an $\omega$-conotoxin GVIA-sensitive (N-type) channel, an $\omega$-agatoxin IVA-sensitive (P-type) channel and nimodipine/$\omega$-conotoxin GVIA/$\omega$-agatoxin IVA-resistant (presumptive Q-type) channel.Q-type) channel.

  • PDF

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Asn-Linked Glycosylation Contributes to Surface Expression and Voltage-Dependent Gating of Cav1.2 Ca2+ Channel

  • Park, Hyun-Jee;Min, Se-Hong;Won, Yu-Jin;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1371-1379
    • /
    • 2015
  • The Cav1.2 Ca2+ channel is essential for cardiac and smooth muscle contractility and many physiological functions. We mutated single, double, and quadruple sites of the four potential Asn (N)-glycosylation sites in the rabbit Cav1.2 into Gln (Q) to explore the effects of Nglycosylation. When a single mutant (N124Q, N299Q, N1359Q, or N1410Q) or Cav1.2/WT was expressed in Xenopus oocytes, the biophysical properties of single mutants were not significantly different from Cav1.2/WT. In comparison, the double mutant N124,299Q showed a positive shift in voltage-dependent gating. Furthermore, the quadruple mutant (QM; N124,299,1359,1410Q) showed a positive shift in voltage-dependent gating as well as a reduction of current. We tagged EGFP to the QM, double mutants, and Cav1.2/WT to chase the mechanisms underlying the reduced currents of QM. The surface fluorescence intensity of QM was weaker than that of Cav1.2/WT, suggesting that the reduced current of QM arises from its lower surface expression than Cav1.2/WT. Tunicamycin treatment of oocytes expressing Cav1.2/WT mimicked the effects of the quadruple mutations. These findings suggest that Nglycosylation contributes to the surface expression and voltage-dependent gating of Cav1.2.

A study on the threshold Voltage Model for Short-channel EIGFET (Short-Channel EIGFET의 Threshold 전압 모델에 관한 연구)

  • Park, Gwang-Min;Kim, Hong-Bae;Gwak, Gye-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.4
    • /
    • pp.1-7
    • /
    • 1985
  • In this paper, a more improved threshold voltage model dependent on drain voltage and substrate bias for short - channel enhancement - mode IGFET is presented. Especially, compared with the several recently published models, the error is sufficiently reduced with the precise analysis on the correction factor for short-channel effect and the calculated values using this model are also agreed well with the experimental data about 1$\mu$m - channel length device.

  • PDF

Channel Orientation Dependent Electrical Characteristics of Low Temperature Poly-Si Thin-film Transistor Using Sequential Lateral Solidification Laser Crystallization

  • Lai, Benjamin Chih-ming;Yeh, Yung-Hui;Liu, Bo-Lin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1263-1265
    • /
    • 2007
  • The electrical characteristics of low temperature poly-Si (LTPS) thin-film transistors (TFT) with channel parallel and perpendicular to the direction of lateral growth were studied. The poly-Si film was crystallized using sequential lateral solidification (SLS) laser crystallization technique. The channel orientation dependent turn-on characteristics were investigated by using gated-diodes and capacitance-voltage measurements

  • PDF