• Title/Summary/Keyword: Voltage-dependent $Ca^{2+}$ channel

Search Result 105, Processing Time 0.023 seconds

Phorbol Ester-Induced Periodic Contraction in Isolated Rabbit Jugular Vein

  • Ryu, Jae-Cheol;Jung, Dong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.225-232
    • /
    • 1995
  • The present study was conducted to evaluate the effect of phorbol 12,13-dibutyrate (PDBu) on the contraction of rabbit jugular vein in vitro. PDBu concentrations of greater than 10 nM induced a periodic contraction which was composed of rapid contraction, plateau and slow relaxation. The frequency of periodic contraction increased as PDBu concentration increased. The PDBu-induced contraction was inhibited by staurosporine (100 nM), it was not changed by tetrodotoxin $(1\;{\mu}M).$ In $Ca^{2+}$-free medium, PDBu induced a sustaining contraction, but not periodic contraction. Addition of $Ca^{2+}$ to medium evoked periodic contraction which was inhibited by nifedipine, PDBu concentrations of greater than $0.1\;{\mu}M$ increased ^{45}Ca^{2+}$ uptake without changing $^{45}Ca^{2+}$ efflux. Charybdotoxin and apamin, $Ca^{2+}$-activated K^{+}$ channel blockers, did not affect the PDBu-induced periodic contraction, whereas tetraethylammonium (TEA) abolished the periodicity. Pinacidil $(10\;{\mu}M).$, a potassium channel activator, blocked PDBu induced periodic contraction, which was recovered by glybenclamide $(10\;{\mu}M).$. In high potassium solution, PDBu did not produce the periodic contraction. These results suggest that the PDBu-induced periodicity of contraction is modulated by voltage dependent $Ca^{2+}$ channel and ATP-sensitive $K^{+}$ channel.

  • PDF

Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes (심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할)

  • Park, Choon-ok;Kim, Yang-mi;Haan, Jae-hee;Hong, Seong-geun
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

Alteration of voltage-dependent activation by a single point mutation of a putative nucleotide-binding site in large-conductance $Ca^{2+}$-activated $K^+$ channel

  • Kim, Hyun-Ju;Lim, Hyun-Ho;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.44-44
    • /
    • 2003
  • $BK_{Ca}$ channels were suggested to contain one or more domains of the ‘regulator of K+ conductance’(RCK) in their cytosolic carboxyl termini (Jiang et al.2001). It was also shown that the RCK domain in mammalian $BK_{Ca}$ channels might sense the intracellular $Ca^{2+}$ with a low affinity (Xia et al. 2002). We aligned the amino acid sequence of the $\alpha$-subunit of rat $BK_{Ca}$ channels (rSlo) with known RCK domains and identified a second region exhibiting about 50% homology. This putative domain, RCK2, contains the characteristic amino acids conserved in other RCK domains. We wondered whether this second domain is involved in the domain-domain interaction and the gating response to intracellular $Ca^{2+}$ for rSlo channel, as revealed in the structure of RCK domain of E. coli channel (Jiang et al.2001). In order to examine the possibility, site-directed mutations were introduced into the RCK2 domain of rSlo channel and the mutant channels were expressed in Xenopus oocytes for functional studies. One of such mutation, G772D, in the putative nucleotide-binding domain resulted in the enhanced $Ca^{2+}$ sensitivity and the channel gating of rSlo channel. These results suggest that this region of $BK_{Ca}$ channels is important for the channel gating and may form an independent domain in the cytosolic region of $BK_{Ca}$ channels. In order to obtain the mechanistic insights of these results, G772 residue was randomly mutagenized by site-directed mutagenesis and total 17 different mutant channels were constructed. We are currently investigating these mutant channels by electrophysiological techniques.ical techniques.

  • PDF

Ginseng Saponins Enhance Maxi $Ca^{2+}-activated\;K^+$ Currents of the Rabbit Coronary Artery Smooth Muscle Cells

  • Chunl Induk;Kim Nak-Doo
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.230-234
    • /
    • 1999
  • Potassium channels play an important role in regulating vascular smooth muscle tone. Four types of $K^+$ channels areknown to be expressed in vascular smooth muscle cells, and maxi $Ca^{2+}-activated\;K^+$ channel $(BK_{Ca})$ is a dominant type of $K^+$ channels in these cells. Because total ginseng saponins and ginsenoside $Rg_3$ cause vasodilation with unclear mechanisms, we hypothesized that total ginseng saponins and ginsenoside $Rg_3$ induce vasodilation via activation of maxi $Ca^{2+}-activated\;K+$ channels. Whole-cell BKe. currents were voltage-dependent with half maximum activation at -14 mV, and the currents were sensitive to nanomolar ChTX and millimolar TEA. External application of total ginseng saponins increased the anlplitude of the whole-cell BKe. current in a concentration-dependent manner. Single-channel analysis indicates that total ginseng saponins caused the channel opening for a longer period of time. Ginsenoside $Rg_3$ increased the amplitude of whole-cell $K_{Ca}$ currents without affecting voltage dependence of the currents and increased single-channel open time. Hence, the results suggest that ginseng saponin-induced vasodilation may be due to activation of $K_{Ca}$.

  • PDF

Ginseng and ion channels: Are ginsenosides, active component of Panax ginseng, differential modulator of ion channels?

  • Jeong, Sang-Min;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2005
  • The last two decades have shown a marked expansion in publications of diverse effects of Panax ginseng. Ginsenosides, as active ingredients of Panax ginseng, are saponins found in only ginseng. Recently, a line of evidences shows that ginsenosides regulate various types of ion channel activity such as $Ca^{2+},\;K^+,\;Na^+,\;Cl^-$, or ligand gated ion channels (i.e. $5-HT_3$, nicotinic acetylcholine, or NMDA receptor) in neuronal, non-neuronal cells, and heterologously expressed cells. Ginsenosides inhibit voltage-dependent $Ca^{2+},\;K^+,\;and\;Na^+$ channels, whereas ginsenosides activate $Ca^{2+}-activated\;Cl^-\;and\;Ca^{2+}-activated\;K^+$ channels. Ginsenosides also inhibit excitatory ligand-gated ion channels such as $5-HT_3$, nicotinic acetylcholine, and NMDA receptors. This review will introduce recent findings on the ginsenoside-induced differential regulations of ion channel activities and will further expand the possibilities how these ginsenoside-induced ion channel regulations are coupled to biological effects of Panax ginseng.

DTNB oxidation effects on T-type $Ca^{2+}$ channel isoforms

  • Lee, Sang-Soo;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • Redox regulation is one of the ubiquitous mechanisms to modulate ion channels. We here investigated how 5,5'-dithio-bis (2-nitrobenzoic acid), a cysteine specific oxidizing reagent, modulates $Ca_v3.1$ and $Ca_v3.2$ T-type $Ca^{2+}$ channels expressed in Xenopus oocytes. Application of the reagent inhibited $Ca_v3.1$ and $Ca_v3.2$ currents in a dose-dependent manner. The oxidizing reagent (1 mM) reduced the peak amplitude of $Ca_v3.1$ and $Ca_v3.2$ currents by ~50% over 2-3 minutes and the decreased currents were fully recovered upon washout of it. The reagent slowed the activation and inactivation kinetics of $Ca_v3.1$, $Ca_v3.2$, and $Ca_v3.3$ channel currents. Notably, the reagent positively shifted both activation and steady-state inactivation curves of $Ca_v3.1$, while it did not those of $Ca_v3.2$. Utilizing chimeric channels from $Ca_v3.1$ and $Ca_v3.2$, we localized the domains III and IV of $Ca_v3.1$ responsible for the positive shifts of channel activation and steady-state inactivation. These findings provide hints relevant to the electrophysiological and molecular mechanisms accounting for the oxidative regulation of T-type channels.

Mechanism of the relaxant action of imipramine in isolated rat aorta (흰쥐 대동맥에서 imipramine의 혈관이완 작용기전)

  • Kang, Hyung-sub;Lee, Sang-woo;Baek, Sung-su;Joe, Sung-gun;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.597-606
    • /
    • 2003
  • Although the antidepressant effects of imipramine (IMI) have been well known in several studies, the effects on cardiovascular system, particularly the vasorelaxant effects, have not known clearly. We hypothesis that IMI-induced vasorelaxation involves NO (nitrie oxide), activation of guanylate cyclase (GC) and $Ca^{2+}$ channel. The possible roles of the endothelium and $Ca^{2+}$ in IMI-induced responses were investigated using isolated rings of rat thoracic aorta and anesthesized rats. In KCl-precontracted rings. IMI produces endothelium-dependent and endothelium-independent relaxations in intact (+E) as well as endothelium-denuded (-E) rat aorta in a concentration-dependent manner. In phenylephrine (PE)-precontracted rings, the IMI-induced relaxation was significantly greater in +E rings. The IMI-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA), N(omega)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, a non-selective GC inhibitor, methylene blue, $Na^+$ channel blockers, lidocaine and procaine, or $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings, but not in PE-precontracted -E rings. These relaxations were also suppressed by lidocaine or procaine in -E aortic rings. However, IMI-induced relaxations were not inhibited by a PLC inhibitor 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC), an inositol monophosphatase inhibitor, lithium, indomethacin and dexamethasone in +E and -E rings. In vivo, infusion of IMI elicited significant decrease in arterial blood pressure. After intravenous injection of saponin, NOS inhibitors. MB and nifedipine, infusion of IMI inhibited the IMI-lowered blood pressure markedly. These findings suggest that the endothelium-dependent relaxation induced by IMI is mediated by activation of NO/cGMP signaling cascade or inhibition of $Ca^{2+}$ entry through voltage-gated channel, and this mechanism may contribute to the hypotensive effects of IMI in rats.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Mechanism of Apoptosis Induced by Diazoxide, a $K^{+}$ Channel Opener, in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.305-313
    • /
    • 2004
  • The effect of diazoxide, a $K^{+}$channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular $K^{+}$concentration, and various inhibitors of $K^{+}$channels had no influence on the diazoxide-induced apoptosis; this implies that $K^{+}$channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and this was completely inhibited by the extracellular $Ca^{2+}$ chelation with EGTA, but not by blockers of intracellular $Ca^{2+}$ release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular $Ca^{2+}$ might be due to the activation of a Ca2+ influx pathway. Diazoxide-induced $Ca^{2+}$ influx was not significantly inhibited by either voltage-operative $Ca^{2+}$ channel blockers (nifedipinen or verapamil), or by inhibitors of $Na^{+}$, $Ca^{2+}$-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a $Ca^{2+}$-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a $Ca^{2+}$ influx through the activation of $Ca^{2+}$-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.

Properties of Spontaneous Activity in Gastric Smooth Muscle

  • Suzuki, H.;Yamamoto, Y.;Hirst, G.D.S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 1999
  • Mammalian gastric smooth muscles generate spontaneous rhythmic contractions which are associated with slow oscillatory potentials (slow waves) and spike potentials. Spike potentials are blocked by organic $Ca^{2+}-antagonists,$ indicating that these result from the activation of L-type $Ca^{2+}-channel.$ However, the cellular mechanisms underlying the generation of slow wave remain unclear. Slow waves are insensitive to $Ca^{2+}-antagonists$ but are blocked by metabolic inhibitors or low temperature. Recently it has been suggested that Interstitial Cells of Cajal (ICC) serve as pacemaker cells and a slow wave reflects the coordinated behavior of both ICC and smooth muscle cells. Small segments of circular smooth muscle isolated from antrum of the guinea-pig stomach generated two types of electrical events; irregular small amplitude (1 to 7 mV) of transient depolarization and larger amplitude (20 to 30 mV) of slow depolarization (regenerative potential). Transient depolarization occurred irregularly and membrane depolarization increased their frequency. Regenerative potentials were generated rhythmically and appeared to result from summed transient depolarizations. Spike potentials, sensitive to nifedipine, were generated on the peaks of regenerative potentials. Depolarization of the membrane evoked regenerative potentials with long latencies (1 to 2 s). These potentials had long partial refractory periods (15 to 20 s). They were inhibited by low concentrations of caffeine, perhaps reflecting either depletion of $Ca^{2+}$ from SR or inhibition of InsP3 receptors, by buffering $Ca^{2+}$ to low levels with BAPTA or by depleting $Ca^{2+}$ from SR with CPA. They persisted in the presence of $Ca^{2+}-sensitive$ $Cl^--channel$ blockers, niflumic acid and DIDS or $Co^{2+},$ a non selective $Ca^{2+}-channel$ blocker. These results suggest that spontaneous activity of gastric smooth muscle results from $Ca^{2+}$ release from SR, followed by activation of $Ca^{2+}-dependent$ ion channels other than $Cl^-$ channels, with the release of $Ca^{2+}$ from SR being triggered by membrane depolarization.

  • PDF