• Title/Summary/Keyword: Voltage support

Search Result 212, Processing Time 0.034 seconds

A Numerical Approach for Lightning Impulse Flashover Voltage Prediction of Typical Air Gaps

  • Qiu, Zhibin;Ruan, Jiangjun;Huang, Congpeng;Xu, Wenjie;Huang, Daochun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1326-1336
    • /
    • 2018
  • This paper proposes a numerical approach to predict the critical flashover voltages of air gaps under lightning impulses. For an air gap, the impulse voltage waveform features and electric field features are defined to characterize its energy storage status before the initiation of breakdown. These features are taken as the input parameters of the predictive model established by support vector machine (SVM). Given an applied voltage range, the golden section search method is used to compute the prediction results efficiently. This method was applied to predict the critical flashover voltages of rod-rod, rod-plane and sphere-plane gaps over a wide range of gap lengths and impulse voltage waveshapes. The predicted results coincide well with the experimental data, with the same trends and acceptable errors. The mean absolute percentage errors of 6 groups of test samples are within 4.6%, which demonstrates the validity and accuracy of the predictive model. This method provides an effectual way to obtain the critical flashover voltage and might be helpful to estimate the safe clearances of air gaps for insulation design.

The Site Selection of 100MVA STATCOM for Voltage Stability Enhancement in Korean Metropolitan Area (수도권 전압안정도 향상을 위한 100MVA STATCOM 위치선정 연구)

  • Chang, Byung-Hoon;Kim, Soo-Yul;Han, Jeong-Yeol;Choi, Don-Keun;Song, Hwa-Chang;Lee, Byong-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1543-1548
    • /
    • 2007
  • This paper reports a study on determination of the adequate location of 100 MVA STATCOM regarding the transfer capability enhancement on the metropolitan interface as well as the economy in system operation. The base case in the study was established considering a scenario of the energy support to North Korea from the KEPCO (Korea Electric Power Corporation) system through a HVDC interconnection. In the base case, the energy support was approximately modeled with a load of 1500 MW, and by the load addition, the system was weakened in terms of voltage stability and transfer capability. After a thorough investigation on the case, the location of the STATCOM was decided to compensate the reactive deficit of the modified system and to maximize the operational benefit which can be estimated by FV analysis.

DC-Link Capacitance Estimation using Support Vector Regression in AC/DC/AC PWM Converters (SVR을 이용한 AC/DC/AC PWM 컨버터의 직류링크 커패시턴스 추정)

  • Ahmed G. Abo-Khalil;Jang, Jeong-Ik;Lee, Dong-Choon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.81-87
    • /
    • 2007
  • This paper proposes a new capacitance estimation scheme for a DC-link capacitor in a three-phase AC/DC/AC PWM converter. A controlled AC voltage with a lower frequency than the line frequency is injected into the DC-link voltage, which then causes AC power ripples at the DC side. By extracting the AC voltage and power components on the DC output side using digital filters, the capacitance can then be calculated using the Support Vector Regression (SVR). By training of SVR, a function which relates a given input (capacitor's power) and its corresponding output (capacitance value) can be derived. This function is used to predict outputs for given inputs that are not included in the training set. The proposed method does not require the information of DC-link current and can be simply implemented with only software and no additional hardware. Experimental results confirm that the estimation error is less than 0.16%.

Response Time Optimization of DVR for 3-Phase Phase-Controlled Rectifier (3상 위상제어 정류기를 위한 DVR의 반응시간 최적화)

  • Park, Chul-Woo;Joung, Sookyoung;Ryu, Jee-Youl;Lee, Dae-Seup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.195-201
    • /
    • 2013
  • In this paper, we present optimization technique for the response time of DVR (Dynamic Voltage Restorer) and the possible compensation range of voltage dip by the DVR system. To protect 3-phase phase-controlled rectifier from voltage dip, DVR system needs to have optimum response time as an important design factor. Although the fast response time of DVR ensures wider range of voltage dip, DVR controller has so high cost and poor stability. This paper proposes DVR system with optimum response time required for certain intensity of voltage dips and good stability to support possible compensation range of voltage dip. Proposed technique showed optimum response time and good stability for overall system. We believe that proposed technique is reliable and useful in DVR design.

Start-Up Current Control Method for Three-Phase PWM Rectifiers with a Low Initial DC-Link Voltage

  • Gu, Bon-Gwan;Choi, Jun-Hyuk;Jung, In-Soung
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.587-594
    • /
    • 2012
  • When a PWM rectifier has a low DC-link voltage during startup, the output voltage vector cannot be high enough to regulate the input current. This lack of a PWM rectifier output voltage vector can cause an unregulated inrush current when the rectifier operation starts. This paper presents a PWM rectifier start-up current control algorithm for when it starts operation with a lower DC-link voltage than unloaded condition case. To avoid the unregulated inrush current caused by a lack of DC-link voltage, the proposed control scheme regulates the one phase current with one switch chopping and it generates the current command considering the uncontrolled current magnitude information, which is calculated in advance. Simulation and experiment results support the validity of the proposed method.

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.

Establishment of 200 kV AC High Voltage National Standard System (200 kV 교류 고전압 국가표준 시스템 구축)

  • Jung, Jae-Kap;Kwon, Sung-Won;Lee, Sang-Hwa;Kang, Jeon-Hong;Song, Yang-Sup;Kim, Myung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1414-1415
    • /
    • 2007
  • 200 kV AC high voltage national standard system has been established with a purpose for support of heavy electrical industry. The system consists of high AC voltage source and regulating unit, the standard voltage transformer, voltage transformer comparator, and voltage transformer burden, and voltage transformer under test.

  • PDF

New High-Voltage Generator with Several mA Output Currents using Low Temperature Poly Silicon (LTPS) Technology for TFT-LCD Panel

  • Akiyama, Yuuki;Suzuki, Yasoji;Ishii, Noriyuki;Murata, Shinichi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.218-221
    • /
    • 2006
  • In this paper, a high-voltage generator with several mA draw output currents using LTPS-TFT technology is proposed. The new generator can be efficiently boosted about +18V output voltages with 5mA draw output currents and power efficiency ${\eta}$ is around 84% under the conditions of +5V power-supply voltage and 250kHz frequency.

  • PDF

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.