• Title/Summary/Keyword: Voltage phase

Search Result 4,306, Processing Time 0.034 seconds

Comparison of Stability on the Nano-crystalline Embedded InGaZnO and Amorphous InGaZnO Oxide Thin-film Transistors (나노결정 InGaZnO 산화물 박막트랜지스터와 비결정 InGaZnO 산화물 박막트랜지스터의 소자 신뢰성에 관한 비교 연구)

  • Shin, Hyun-Soo;Ahn, Byung-Du;Rim, Yoo-Seung;Kim, Hyun-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.473-479
    • /
    • 2011
  • In this paper, we have compared amorphous InGaZnO (a-IGZO) thin-film transistor (TFT) with the nano-crystalline embedded-IGZO ($N_c$-embedded-IGZO) TFT fabricated by solid-phase crystallization (SPC) technique. The field effect mobility (${\mu}_{FE}$) of $N_c$-embedded-IGZO TFT was 2.37 $cm^2/Vs$ and the subthreshold slope (S-factor) was 0.83 V/decade, which showed lower performance than those of a-IGZO TFT (${\mu}_{FE}$ of a-IGZO was 9.67 $cm^2/Vs$ and S-factor was 0.19 V/decade). This results originated from generation of oxygen vacancies in oxide semiconductor and interface between gate insulator and semiconductor due to high temperature annealing process. However, the threshold voltage shift (${\Delta}V_{TH}$) of $N_c$-embedded-IGZO TFT was 0.5 V, which showed 1 V less shift than that of a-IGZO TFT under constant current stress during $10^5$ s. This was because there were additionally less increase of interface trap charges in Nc-embedded-IGZO TFT than a-IGZO TFT.

Improvement of the Figure of Merit in Pb[(Mg1/3Ta2/3)0.7Ti0.3]O3 Systems

  • Kim, Yeon Jung
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.88-91
    • /
    • 2016
  • The $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+xwt%PbO systems at temperature of $1250^{\circ}C$ for 4 hours was successful synthesized. In this study, PbO-doped $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$ systems with non-linear behaviors showed ordering-degree dependence at the low temperature range were prepared using the columbite precursor method. And the characteristic of remnant polarization vs. electric field were analyzed. The pyroelectric, dielectric and piezoelectric properties of partially disordered $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+xwt%PbO solid solutions were studied as a function of temperature, frequency, and electric field. It showed distinct features of temperature dependent of pyroelectric coefficient, spontaneous polarization and dielectric constant at about $50^{\circ}C$. The figure of merit was calculated as pyroelectric coefficient, dielectric constant and dissipation factor. It was found that the high voltage responsivity FV, high detectivity FD were $0.0373m^2/C$ and $0.6735{\times}10^{-4}Pa{-1/2}$, respectively, in the $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+3.0 wt%PbO system.

Design and Fabrication of Flexible OTFTs by using Nanocantact Printing Process (미세접촉프린팅 공정을 이용한 유연성 유기박막소자(OTFT)설계 및 제작)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh;Esashi Masayoshi
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.506-508
    • /
    • 2005
  • In general, organic TFTs are comprised of four components: gate electrode, gate dielectric, organic active semiconductor layer, and source and drain contacts. The TFT current, in turn, is typically determined by channel length and width, carrier field effect mobility, gate dielectric thickness and permittivity, contact resistance, and biasing conditions. More recently, a number of techniques and processes have been introduced to the fabrication of OTFT circuits and displays that aim specifically at reduced fabrication cost. These include microcontact printing for the patterning of metals and dielectrics, the use of photochemically patterned insulating and conducting films, and inkjet printing for the selective deposition of contacts and interconnect pattern. In the fabrication of organic TFTs, microcontact printing has been used to pattern gate electrodes, gate dielectrics, and source and drain contacts with sufficient yield to allow the fabrication of transistors. We were fabricated a pentacene OTFTs on flexible PEN film. Au/Cr was used for the gate electrode, parylene-c was deposited as the gate dielectric, and Au/Cr was chosen for the source and drain contacts; were all deposited by ion-beam sputtering and patterned by microcontact printing and lift-off process. Prior to the deposition of the organic active layer, the gate dielectric surface was treated with octadecyltrichlorosilane(OTS) from the vapor phase. To complete the device, pentacene was deposited by thermal evaporation and patterned using a parylene-c layer. The device was shown that the carrier field effect mobility, the threshold voltage, the subthreshold slope, and the on/off current ratio were improved.

  • PDF

Design, fabrication and performance characteristics of a 50kHz tonpilz type transducer with a half-wavelength diameter (반파장 직경을 갖는 50kHz tonpilz형 음향 변환기의 설계, 제작 및 성능특성)

  • Lee, Dae-Jae;Lee, Won-Sub
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In a split beam echo sounder, the transducer design needs to have minimal side lobes because the angular position and level of the side lobes establishes the usable signal level and phase angle limits for determining target strength. In order to suppress effectively the generation of unwanted side lobes in the directivity pattern of split beam transducer, the spacing and size of the transducer elements need to be controlled less than half of a wavelength. With this purpose, a 50 kHz tonpilz type transducer with a half-wavelength diameter in relation to the development of a split beam transducer was designed using the equivalent circuit model, and the underwater performance characteristics were measured and analyzed. From the in-air and in-water impedance responses, the measured value of the electro-acoustic conversion efficiency for the designed transducer was 51.6%. A maximum transmitting voltage response (TVR) value of 172.25dB re $1{\mu}Pa/V$ at 1m was achieved at 52.92kHz with a specially designed matching network and the quality factor was 10.3 with the transmitting bandwidth of 5.14kHz. A maximum receiving sensitivity (SRT) of -183.57dB re $1V/{\mu}Pa$ was measured at 51.45kHz and the receiving bandwidth at -3dB was 1.71kHz. These results suggest that the designed tonpilz type transducer can be effectively used in the development of a split beam transducer for a 50kHz fish sizing echo sounder.

Power Monitoring System with Multiple Input Channels Using the Definition of IEEE Standard 1459-2010 (IEEE 1459-2010 규격의 정의를 이용한 다중 입력 채널을 갖는 전력 감시 시스템)

  • Jeon, Jeong-Chay;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3100-3106
    • /
    • 2014
  • This paper develops power measurement system with multiple sensor input channels (voltage-8 channels and current-10 channels) that simultaneously can monitor power components for both supply and load side of power system. The hardware implementation of the proposed system is based on TMS320C42 DSP and signal processing program algorithm to calculate power components use the definition of IEEE Standard 1459-2010 related power quality. The performance of the developed system is tested by using standard ac power source device, and the test results showed that accuracy of the developed system is less than 0.2 %. Also, field test of the proposed system in the three-phase and four-wire power system was implemented. Simultaneous multiple channel measurement and analysis of power components in commercial and industrial electrical power system using the proposed system will be necessary to reduce power quality problems.

Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성)

  • Lee, Ki Chang;Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.239-243
    • /
    • 2014
  • The electrical and optical properties of amorphous In-Tin-Zinc-Oxide(ITZO) deposited at room temperature using rf-magnetron sputtering were investigated. The amorphous ITZO thin films were obtained at the composition of In:Sn:Zn = 6:2:2, 4:3:3, and 2:4:4, but the ITZO (8:1:1) showed a crystalline phase of bixbyite structure of In2O3. The resistivity of ITZO could be controlled by oxygen pressure in the sputtering ambient. The resistivity of post-annealed ITZO thin films exhibited the dependence on the amount of Indium. Optical energy band gap and transmittance increased as the amount of indium in ITZO increased. For the device application with ITZO, the bottom-gated thin-film transistor using ITZO as a active channel layer was fabricated. It showed a threshold voltage of 1.42V and an on/off ratio of $5.63{\times}10^7$ operated with saturation field-effect mobility of $14.2cm^2/V{\cdot}s$.

Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition (복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단)

  • Kim, Youn-Tae;Bae, Hyeon;Park, Jin-Su;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Induction motors are critical components in industrial process. So there are many research in the condition based maintenance, online monitoring system, and fault detection. This paper presents a scheme on the detection and diagnosis of the three-phase squirrel induction motor under unbalanced voltage, broken rotor bar, and a combination of these two faults. Actually one fault happen in operation, it influence other component in motor or cause another faults. Accordingly it is useful to diagnose and detect a combination fault in induction motor as well as each fault. The proposed fault detection and diagnosis algorithm is based on the stator currents from the squirrel induction motor and simulated with the aid of Matlab Simulink.

A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3 (NH3를 이용한 반응성 증착법에 의한 AlN 박막의 우선배향특성에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Aluminum nitride(AlN) is a compound (III-V group) of hexagonal system with a crystal structure. Its Wurzite phase is a very wide band gap semiconductor material. It has not only a high thermal conductivity, a high electrical resistance, a high electrical insulating constant, a high breakdown voltage and an excellent mechanical strength but also stable thermal and chemical characteristics. This study is on the preferred orientation characteristics of AlN thin films by reactive evaporation using $NH_3$. We have manufactured an AlN thin film and then have checked the crystal structure and the preferred orientation by using an X-ray diffractometer and have also observed the microstructure with TEM and AlN chemical structure with FT-IR. We can manufacture an excellent AlN thin film by reactive evaporation using $NH_3$ under 873 K of substrate temperature. The AlN thin film growth is dependent on Al supplying and $NH_3$ has been found to be effective as a source of $N_2$. However, the nuclear structure of AlN did not occur randomly around the substrate a particle of the a-axis orientation in fast growth speed becomes an earlier crystal structure and is shown to have an a-axis preferred orientation. Therefore, reactive evaporation using $NH_3$ is not affected by provided $H_2$ amount and this can be an easy a-axis orientation method.

Fabrication of Porous Silk Fibroin Microparticles by Electrohydrodynamic Spraying (전기분사법에 의한 다공성 실크 피브로인 미세입자의 제조)

  • Kim, Moo Kon;Lee, Ki Hoon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.98-102
    • /
    • 2014
  • Nowadays, silk fibroin receives a lot of attention as novel natural biomaterials due to its excellent biocompatibility and biodegradability. Electrohydrodynamic spraying (EHDS) is one of the method for the preparation of micro or nanoparticles by applying high voltage to the polymer solution. In this research, we fabricated silk fibroin porous microparticles by electrohydrodynamic spraying. Poly(ethylene glycol) (PEG) was added to the fibroin solution to give pores to silk fibroin microparticles. By the addition of PEG, the microparticle size was decreased despite of the decrease in conductivity and the increase of viscosity of the spraying solution. It seems that the immiscibility of silk fibroin and PEG affected much more to the microparticle size than the conductivity and viscosity. Immersing the as-sprayed microparticles into the water removed the phase-separated PEG, and finally, porous silk fibroin microparticles were prepared. The porous silk fibroin microparticles are expected to be applied as drug carriers in drug delivery or cell carriers in tissue engineering.

Controlled Synthesis of FeSe2 Nanoflakes Toward Advanced Sodium Storage Behavior Integrated with Ether-Based Electrolyte

  • Chen, Yalan;Zhang, Jingtong;Liu, Haijun;Wang, Zhaojie
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850141.1-1850141.11
    • /
    • 2018
  • Sodium ion batteries based on the more sodium source reserve than that of lithium have been designed as promising alternatives to lithium ion batteries. However, several problems including unsatisfied specific capacity and serious cyclic stability must be solved before the reality. One of the effective approaches to solve the abovementioned problems is to search for suitable anode materials. In this work, we designed and prepared $FeSe_2$ nanoflakes via a simple hydrothermal method which can be adjusted in composition by Fe precursor. As a potential anode for sodium storage, the optimized $FeSe_2$ electrode was further evaluated in different electrolytes of $NaClO_4$ in propylene carbonate/fluoroethylene carbonate and $NaCF_3SO_3$ in diethylene glycol dimethyl ether. The capacity was about $470mAh\;g^{-1}$ and $535mAh\;g^{-1}$ at $0.5A\;g^{-1}$, respectively, in the voltage between 0.5 V and 2.9 V in the cycle of stabilization phase. Superior performance both in capacity and in stability was obtained in ether-based electrolyte, which affords the property without plugging the intermediates of transition metal dichalcogenides during charge/discharge processes.