• Title/Summary/Keyword: Voltage phase

Search Result 4,306, Processing Time 0.027 seconds

On-Site Calibration Technology of Burden using Voltage Transformer Comparator (전압변성기 비교기를 이용한 부담의 현장교정 기술)

  • Jung, Jae Kap;Kwon, Sung Won;Park, Young Tae;Kim, Myung Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.11
    • /
    • pp.503-507
    • /
    • 2005
  • Both ratio error and phase angle error in voltage transformer(VT) depend on values of VT burden used. Thus, precise measurement of burden is very important for the evaluation of VT. A method of evaluation for VT burden has been developed by employing the portable decade resistor, with AC-DC resistance difference less than 10-3. The burden value(value and power factor) can be obtained by conductance and susceptance, obtained by measuring the change of ratio error and phase angle error caused by the resistance change of decade resistor. The burden value and power factor obtained by the method are consistent with those obtained using power analyzer within corresponding uncertainties.

Driving Characteristic of Passive Converter for Single Phase SRM (단상 SRM 구동을 위한 Passive Converter 동작특성)

  • Liang, Jianing;Seok, Seung-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.113-115
    • /
    • 2008
  • At the high speed operation, the high demagnetization voltage can reduce the negative torque, so the output power and efficiency can be improved. In this paper, a novel power converter for single phase SRM with high demagnetization voltage is proposed. A simple passive capacitor circuit is added in the front-end, which consists of three diodes and one capacitor. Based on this passive network, the two capacitors can be connected in series and parallel, so the phase winding of SRM obtains general do-link voltage in excitation mode and the double dc-link voltage in demagnetization mode. The operation modes of the proposed converter are analyzed in detail. Some computer simulation results is done to verify the performance of proposed converter.

  • PDF

A Single-Phase Micro-Source System with a.c Voltage Compensation Capability (교류전압 보상기능을 갖는 단상 마이크로 소스 시스템)

  • Oum, J.H.;Jung, Y.G.;Lim, Y.C.;Kim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.135-138
    • /
    • 2006
  • For compensating the a.c voltage variations of single-phase micro-source, micro-source system with a voltage compensator is proposed. Single phase p-q algorithm for calculating the a.c voltage variations of the micro-source is used. The effectiveness of the proposed the system is verified by the PSIM simulation in the steady state and transient state.

  • PDF

The Comparison Study for Voltage, Current and Load Unbalance Factor (전압, 전류 및 부하 불평형율에 대한 비교 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Park, Jong-Ho;Lee, Eun-Wong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.115-120
    • /
    • 2004
  • Most of the LV customer have been applied the distribution system of 3-phase four wire system because of its advantage of supplying both of 1-phase & 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But uneven load distribution or unclean voltage quality has occurred various problems such as do-rating, losses increase and vibration, etc. In this paper, voltage, current and power waveform in the actual fields have measured and analyzed in relation with internationally allowable voltage unbalance limits and compared the current unbalance factor with the load unbalance factor.

  • PDF

Characteristic Experimental of Low Voltage Three phase Diode Rectifier Circuit (저전압 3상 다이오드 정류회로의 특성 실험)

  • Suh K.Y.;Kim Y.M.;Mun S.P.;Kim J.Y.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.89-92
    • /
    • 2001
  • In conventional three-phase rectifiers, it was necessary to use a transformer to obtain low output voltage. In this paper, we propose a characteristic experimental of three-phase diode rectifiers circuit that achieves low voltage by using a very simple circuit configuration that does not have a transformer and does not need any complex control. We also describe the operation principle of the proposed circuit, and der?ive a theoretical formula for its current waveform. On the basis these theoretical values with experimentally obtained input output current characteristics, current amplification factor, and output voltage characteristics, allowed us to confirm the soundness of our theoretical analyses.

  • PDF

Reduction Method of Harmonic Current by Distorted Grid Voltage in the Grid-connected Inverter (계통연계형 인버터의 왜곡된 계통전압에 의해 발생하는 전류고조파 저감방법)

  • Mok, H.S.;Choe, G.H.;Lee, J.M.;Kim, S.H.;Ji, J.K.
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.108-111
    • /
    • 2007
  • Phase angle in grid-connected inverter is important information for current control. When different loads are connected to PCC(Point of Common Coupling) of grid, distorted grid voltage is taken place by load utility generating distorted current. Especially, in case the grid voltage is distorted by low order frequency such as $3^{rd}$, $5^{th}$ harmonic, phase angle of PLL output is distorted. This paper analyze problem of current THD(Total Harmonic Distortion) due to distorted phase angle by distorted grid voltage, and propose control method compensating this problem. Also, it‘s validity is verified by simulation and experiment.

  • PDF

A Novel Three-Port Converter for the On-Board Charger of Electric Vehicles (새로운 전기 자동차 온보드 충전기용 3-포트 컨버터)

  • Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.111-112
    • /
    • 2017
  • This paper presents a novel three-port converter for the OnBoard Charger of Electric Vehicles by using an impedance control network. The proposed concept is suitable for charging a main battery and an auxiliary battery of an electric vehicle at the same time due to its power handling capability of the converter without additional switches. The power flow is managed by the phase angle (${\Theta}$) between the ports whereas voltage at each port is controlled by the asymmetric duty cycle and the phase shift (${\Phi}$) between the inverter lags controlled by the impedance control network. The proposed system has a capability of achieving zero voltage switching (ZVS) and zero current switching (ZCS) at all the switches over the wide range of input voltage, output voltage and output power. The feasibility of the proposed system is verified by the PSIM simulation.

  • PDF

Controller Design for a Quick Charger System Suitable for Electric Vehicles

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1122-1130
    • /
    • 2013
  • This paper proposes a new design for quick battery charger systems for electric vehicles that consists of a three-phase inverter and a full-bridge converter which use the phase-shift method. The 3-phase inverter controls the input and DC-link voltage by use of a current controller and a voltage controller. The full-bridge converter transfers the DC-link voltage to a fixed output voltage. Designs for the output-side converter and controller for improved performance are proposed in this paper. Design schemes for the filter and controller of an input-side inverter are also presented. Furthermore, the paper proposes a compensation method for the offset current that is caused by switch failure and circuit problems. Simulations and experiments have been performed on a 50kW-battery charger system that is suitable for vehicles. The presented results verify the validity of the proposed method and the superiority of the system over conventional methods.

Design of Buck-Boost DC-AC Inverter Using Microcontroller (마이크로컨트롤러를 이용한 벅-부스트 DC-AC 인버터 설계)

  • Park, Jong-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.45-51
    • /
    • 2009
  • The single phase buck-boost DC-AC inverter generates an alternating output voltage as the differential voltage of two DC-DC individual buck-boost converters. Two converters are driven with DC-biased and $180[^{\circ}]$ phase-shifted sinusoidal references. The peak value of the inverter alternating output voltage does not depend on the direct input voltage. In this paper, single phase buck-boost DC-AC inverter is designed and implemented on a prototype with digital controller using a microcontroller.

Three Phase Three-Level Switched Voltage Source PWM Inverter with Zero Neutral Point Potential (영 전위 중성점을 가진 새로운 3상 Three-Level 스위치 전압원 인버터)

  • Oh Won-Sik;Han Sang-Kyoo;Choi Seong-Wook;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.630-634
    • /
    • 2004
  • A new three phase three-level Pulse Width Modulation (PWM) Switched Voltage Source (SVS) inverter with zero neutral point potential is proposed. The major advantage is that the peak value of the phase output voltage is twice as high as that of the conventional neutral-point-clamped (NPC) PWM inverter. Furthermore, three-level waveforms of the proposed inverter can be achieved without switch voltage unbalance problem. Since the average neutral point potential of the proposed inverter is zero, the common ground between input stage and output stage is possible. The proposed inverter is verified by experimental results based on a laboratory prototype.

  • PDF