• Title/Summary/Keyword: Voltage inverter

Search Result 2,922, Processing Time 0.022 seconds

Improved Performance of SVPWM Inverter Based on Novel Dead Time and Voltage Drop Compensation (새로운 데드타임 및 전압강하의 보상을 이용한 SVPWM 인버터의 성능개선)

  • Lee, Dong-Hui;Gwon, Yeong-An
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.618-625
    • /
    • 2000
  • Recently PWM inverters are widely utilized for many industrial applications e.g. high performance motor drive and PWM techniques are newly developed for an accurate output voltage. Among them space voltage vector PWM(SVPWM) inverter has high voltage ratio and low harmonics compared to the conventional sinusoidal PWM inverter. However output voltage of PWM inverter is distorted and has error duet o the conducting voltage drop of switching devices and the dead time that is inevitable to prevent the shoot-through phenomenon. This paper investigates 3-phase SVPWM inverter which has a new compensation method against dead time and voltage drop. Proposed algorithm calculates gate pulse periods which directly compensates the dead time and nonlinear voltage drop without modification of reference voltages. Direct compensation of gate pulse periods produces exact output voltage and does not need additional circuits. The propose algorithm is verified through the simulation and experiments.

  • PDF

Compensating for the Neutral-Point Potential Variation in Three-Level Space-Vector PWM Method (3-레벨 인버터 공간벡터 변조시의 중성점 전위 변동 보상법)

  • Seo Jae Hyeong;Kim Kwang Seob;Bang Sang Seok;Choi Chang Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.475-478
    • /
    • 2001
  • In performing the three-level SVPWM, it is nearly impossible to control the neutral-point potential exactly to the half of the dc-link voltage at all times. Therefore the inverter would produce an erroneous output voltage by this voltage unbalance. So the voltage unbalance has to be compensated in doing PWM, when the voltage unbalance occurs whether it is small or large, to make the inverter output voltage follow the reference voltage exactly the same. In this paper, a new compensating method for the neutral-point potential variation in a three-level inverter space vector PWM (SVPWM) is presented. By using the proposed method, the output voltage of the inverter can be made same as the reference voltage and thus the current and torque ripple of the inverter driven motor can be greatly improved even if the voltage unbalance is quite large. The proposed method is verified experimentally with a 3-level IGBT inverter.

  • PDF

Instantaneous sinusoidal currant tracking mode inverter with quasi-resonant Link in DC side (공진 DC Link 순시 정현파 전류 추종형 인버터를 이용한 유도전동기 제어시스템)

  • Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.324-327
    • /
    • 1990
  • In this paper describes the feasibility study on a single-phase / three-phase voltage-fed inverter using 1GBTs, incorporating voltage-mode quasi-resonant DC Link and the instantaneous Sinusoidal Current tracking adaptive control implementation under zero voltage switching resfriction. The simulation and experimental results are shown here and discussed for single-phase voltage-fed and three-phase voltage-fed inverter in order to verify the new operating principle of the Inverter topology proposed here.

  • PDF

A Novel Multi-Level Inverter Configuration for High Voltage Conversion System

  • Suh, Bum-Seok;Lee, Yo-Han;Hyun, Dong-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.109-118
    • /
    • 1996
  • This paper deals with a new multi-level high voltage source inverter with GTO Thyristors. Recently, a multi-level approach seems to be the best suited for implementing high voltage conversion systems because it leads to harmonic reduction and deals with safe high power conversion systems independent of the dynamic switching characteristics of each power semiconductor device. A conventional multi-level inverter has some problems; voltage unbalance between DC-link capacitors and larger blocking voltage across the inner switching devices. To solve these problems, the novel multi-level inverter structure is proposed.

  • PDF

A Single-Phase Embedded Z-Source DC-AC Inverter by Asymmetric Voltage Control (비대칭 전압 제어를 이용한 단상 임베디드 Z-소스 DC-AC 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • In case of the conventional DC-AC inverter using two DC-DC converters with unipolar output capacitor voltages, for generating the AC output voltage, the output capacitor voltages of its each DC-DC converter must be higher than the DC input voltage. To solve this problem, this paper proposes a single-phase DC-AC inverter using two embedded Z-source converters with bipolar output capacitor voltages. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The AC output voltage is obtained by the difference of the output capacitor voltages of each converter. Though the output capacitor voltage of converter is relatively low compared to the conventional method, it can be obtained the same AC output voltage. Moreover, by controlling asymmetrically the output capacitor voltage, the AC output voltage of the proposed system is higher than the DC input voltage. To verify the validity of the proposed system, a DSP(TMS320F28335) based single-phase embedded Z-source DC-AC inverter was made and the PSIM simulation was performed under the condition of the DC source 38V. As controlled symmetrically and asymmetrically the output capacitor voltages of each converter, the proposed inverter could produce the AC output voltage with sinusoidal waveform. Particularly, in case of asymmetric control, a higher AC output voltage was obtained. Finally, the efficiency of the proposed system was measured as 95% and 97% respectively in case of symmetric and asymmetric control.

Wide Frequency Current Source Inverter (광역 주파수 전류원형 인버터)

  • 전성즙;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.927-935
    • /
    • 1994
  • Detailed analysis of the commutation circuit of the proposed wide-frequency current source inverter is given. In this inverter a spike-limit circuit and a precommutation circuit are used. The spike-limit circuit is intended to limit spike voltage which is arising during commutation time in a current source inverter, and the precommutation circuit to reuse the energy which flows from main inverter to spike-limit circuit during commutation time to aid commutation. Thus voltage stress of main thyristor is minimized. Since this inverter can be made up of thyristors for phase control, it has some advantage in high voltage and high power application.

The DC-link Voltage Balancing of the Three-Level T-type Inverter Using the Predictive Control (예측제어를 이용한 T-형 3-레벨 인버터의 중성점 전압제어)

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.311-318
    • /
    • 2016
  • This paper is a study on the neutral point voltage balancing of the three-phase 3-level T-type inverter using the predictive control techniques. Recently, multi-level inverter has been attracting attention as the advantages such as efficiency improving and harmonic reduction. Especially, the T-type inverter topology is advantageous in low DC-link voltage. However, in case of the prediction control, it takes a lot of time, because there exist 27 voltage vectors and it has to be calculated according to the respective voltage vectors. Therefore, in this paper, we propose a method to implement predictive control techniques while reducing the operation time. In order to reduce the operation time, the predictive control is implemented by using the minimum voltage vector except for the unnecessary voltage vector. The result of the implemented predictive control is added to the SPWM by using the offset voltage. It was verified through simulation and experimental results.

Resonant Step-Down DC/DC Converter to Reduce Voltage Stresses of Motor Driving Inverter under 3-phase AC Utility Line Condition (3상 전원 조건의 모터 구동 인버터 내압 저감을 위한 공진 강압형 DC/DC 컨버터)

  • Kang, Kyung-Soo;Kim, Sang-Eon;Lee, Joon-Hwan;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.391-398
    • /
    • 2014
  • This paper presents a resonant step-down DC/DC converter to reduce the voltage stresses of a 3-phase inverter module under the three-phase AC utility line condition. Under this condition, a conventional 3-phase inverter module suffers from high voltage stresses as a result of the high rectified DC link voltage; hence, a high-cost high-voltage-rating inverter module must be used. However, using the proposed converter, a low-cost low-voltage-rating inverter module may be adopted to drive the motor even under the 3-phase AC line condition. The proposed converter, which can be realized with small size inductor and low-voltage-rating semiconductor devices, operates at a high-efficiency mode because of the zero-current switching operations of all the semiconductor devices. The operational principles are explained and a design example is provided in the study. Experimental results demonstrate the validity of the proposed converter.

Voltage Control of Stand-Alone Inverter for Power Quality Improvement Under Unbalanced and Non-linear Load (불평형 및 비선형부하 시 전력품질 향상을 위한 독립형 인버터의 전압제어 기법)

  • Lee, Wujong;Jo, Jongmin;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.567-575
    • /
    • 2016
  • This paper proposed the voltage control of stand-alone inverter for power quality improvement under unbalanced and non-linear load. The 3-phase DC-AC inverter controls CVCF(Constant Voltage Constant Frequency) and selective harmonic eliminate method in stand-alone mode by PR controller, and the stand-lone inverter supplies stable sinusoidal voltage to balanced, unbalanced and non-linear loads. The total harmonic distortion(THD) of line-to-line load voltage($V_{LL}$) is 1.2% in the balanced load. THD of $V_{LL}$ is reduced from 5.2% to 1.4% and 6.7% to 3.5%, respectively unbalanced and non-linear load. The stand-alone inverter can be supplies sinusoidal balanced voltage to unbalanced load because the voltage unbalanced factor(VUF) of $V_{LL}$ is reduced from 5.2% to 1.4% in the unbalanced load. Feasibility of control method for a stand-alone inverter will be verified through 30kW stand-alone inverter system.

A New Inverter Topology for High Voltage and High Power Applications (고전압 대용량을 위한 새로운 인버터 토폴로지)

  • 김태훈;최세완;박기원;이왕하
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • In this paper, a new three-phase voltage-source inverter topology for high voltage and high Power applications is proposed to improve the quality of output voltage waveform. A chain converter which is used as an auxiliary circuit generates a ripple voltage and injects it to the conventional 12-step inverter. Thus, the injection of the ripple voltage results in 36-step operation with a link and 60-step operation with two links. The proposed inverter is compared to the conventional multilevel inverter in the viewpoint of ratings of phase- shifting transformers, switching devices and capacitors employed. The proposed scheme is simple to control capacitor voltages compared to the conventional schems and is cost effective for high voltage and high power application over several tens of MVA. The proposed approach is validated through simulation, and the experimental results are provided from a 2KVA laboratory prototype.