• 제목/요약/키워드: Voltage and frequency controller

검색결과 403건 처리시간 0.023초

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

Enhanced Dynamic Response of SRF-PLL System for High Dynamic Performance during Voltage Disturbance

  • Choi, Hyeong-Jin;Song, Seung-Ho;Jeong, Seung-Gi;Choi, Ju-Yeop;Choy, Ick
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.369-374
    • /
    • 2011
  • Usually, a LPF (low pass filter) is used in the feedback loop of a SRF (synchronous reference frame) - PLL (phase locked loop) system because the measured grid voltage contains harmonic distortions and sensor noises. In this paper, it is shown that the cut-off frequency of the LPF should be designed to suppress the harmonic ripples contained in the measured voltage. Also, a new design method for the loop gain of the PI-type controller in the SRF-PLL is proposed with consideration of the dynamics of the LPF. As a result, a better transient response can be obtained with the proposed design method. The LPF frequency and the PI controller gain are designed in coordination according to the steady state and dynamic performance requirements. Furthermore, in the proposed method, the controller gain and the LPF cut-off frequency are changed from their normal value to a transient value when a voltage disturbance is detected. This paper shows the feasibility and usefulness of the proposed methods through the computer simulations and experimental results.

A Wide Frequency Range LLC Resonant Controller IC with a Phase-Domain Resonance Deviation Prevention Circuit for LED Backlight Units

  • Park, YoungJun;Kim, Hongjin;Chun, Joo-Young;Lee, JooYoung;Pu, YoungGun;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.861-875
    • /
    • 2015
  • This paper presents a wide frequency range LLC resonant controller IC for LED backlight units. In this paper a new phase-domain resonance deviation prevention circuit (RDPC), which covers a wide frequency and input voltage range, is proposed. In addition, a wide range gate clock generator and an automatic dead time generator are proposed. The chip is fabricated using 0.35 μm BCD technology. The die size is 2 x 2 mm2. The frequency of the clock generator ranges from 38 kHz to 400 kHz, and the dead time ranges from 300 ns to 2 μs. The current consumption of the LLC resonant controller IC is 4 mA for a 100 kHz operation frequency using a supply voltage of 15 V.

FPGA를 이용한 초음파 모터 구동용 디지털 다중 제어기 개발 (The Development of Ultrasonic Motor-Digital Multi Controller using FPGA)

  • 김동옥;김영동;오금곤;정국영;정찬주;류재민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.187-190
    • /
    • 2002
  • In contrast to conventional electromagnetic motor, USM(Ultrasonic Motor), as piezoelectric ceramic applying ultrasonic mechanical vibration and as frictional-movement type motor, get rotational torque by elastic friction between stator and rotator, The USM, which is small motor without iron cores and coil as a simple structure, has little load weight, has character of high torque at low speed, and can apply a direct drive type without deceleration gear as low speed type. A response of USM from control input is satisfactory, and also generates much torque in low speed driving, and holding torque is much without supplying power. In this study, I designed and made Ultrasonic motor-digital multi controller(USM- DMC) using FPGA chip, A54SX72A made in Actel Corporation. By the minute, USM-DMC can control frequency, duty ratio, and phase difference of USM by llbit digital input from Pc. Therefore, when we use this controller, we can apply to typical parameter, frequency, phase difference, and voltage parameter, to control as well as we can do mixing control like phase-frequency, phase-voltage, frequency-voltage, frequency-phase-voltage, What is more, the strongest point is that it can trace frequency based on optimized frequency because we can input optimized resonant frequency while in motoring.

  • PDF

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.

Implementation of a Fuzzy PI Controller for Speed Control of Induction Motors Using FPGA

  • Arulmozhiyaly, R.;Baskaran, K.
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.65-71
    • /
    • 2010
  • This paper presents the design and implementation of voltage source inverter type SVPWM based speed control of an induction motor using a fuzzy PI controller. This scheme enables us to adjust the speed of the motor by controlling the frequency and amplitude of the stator voltage; the ratio of the stator voltage to the frequency should be kept constant. A model of the fuzzy control system is implemented in real time with a Xilinx FPGA XC3S 400E. It is introduced to maintain a constant speed to when the load varies.

단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구 (A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs)

  • 곽봉우
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.319-326
    • /
    • 2023
  • 본 논문에서는 단상 전압 소스 인버터 (VSIs)의 강인한 출력 전압 제어를 위한 디지털 제어기 구현과 총 고조파 왜곡(T.H.D.v) 분석을 포함한 시뮬레이션 및 실험 결과를 제시한다. 일반적으로 VSI는 내부 루프의 전류 제어기에 비례 적분(PI) 제어기를 사용하고 외부 루프의 전압 제어기에 비례 공진 (PR) 제어기가 사용된다. 그러나, 비선형 부하에서 여전히 3차, 5차 및 7차와 같은 고차 고조파 왜곡이 발생한다. 따라서 본 논문에서는 고조파 왜곡을 억제하기 위해 홀수 고조파 주파수에 대한 공진 제어기를 포함한 비례 다중 공진 (PMR) 제어기를 제안한다. VSI 플랜트용 컨트롤러의 주파수 응답을 분석하고 PMR 컨트롤러를 설계합니다. 시뮬레이션을 통해 PI와 PMR을 전압 제어기로 사용할 때 출력 전압의 총 고조파 왜곡 특성을 비교 검증합니다. 선형 및 비선형 하중 조건이 모두 고려되었습니다. 마지막으로 PMR 제어기를 3kW급 VSIs 프로토 타입에 적용하여 그 유효성을 입증하였다.

Feedback을 가진 P.V.M.방식 Chopper 회로에 관한 연구 (A Study on Pulse Frequency Modulated Chopper with Feedback)

  • 박민호;전희종
    • 전기의세계
    • /
    • 제26권3호
    • /
    • pp.63-68
    • /
    • 1977
  • In this paper, the theory of pulse frequency modulated DC/DC power converter to obtain constant output voltage for all input voltage changes is discussed. The switch controller consisting of integrator and comparator determines the ON time of power switch-Thyristor-by the error between the load voltage and a load reference voltage. Resulting voltage and current waveforms have been studied theoretically in detail and verified experimentally for a resistive and inductive load condition. State equations for voltages and currents using binary logic variables are computed by digital computer. Comparison of these withe oscillograms obtained from an experimental model shows very close agreement.

  • PDF

Bidirectional High-Frequency Link Inverter with Deadbeat Control

  • Salam, Zainal
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.726-735
    • /
    • 2009
  • This paper presents a Bidirectional High-Frequency Link (BHFL) inverter that utilizes the Deadbeat controller. The main features of this topology are the reduced size of the inverter and fewer power switches. On the secondary side of the transformer, the active rectifier employs only two power switches, thus reducing switching losses. Using this configuration, the inverter is capable of carrying a bidirectional power flow. The inverter is controlled by a Deadbeat controller, which consists of the inner current loop, outer voltage loop and a feedforward controller. Additional disturbance decoupling networks are employed to improve the system's robustness towards load variations. A 1-kVA prototype inverter has been constructed and the Deadbeat control algorithm is experimentally verified. The experimental results show that the inverter has high efficiency (91%) with low steady state output voltage total harmonics distortion (1.5%).

Frequency Stabilization Method for Grid Integration of Large-scale Centralized Wind Farms via VSC-HVDC Technology

  • Peng, Yanjian;Li, Yong;Liu, Fang;Xu, Zhiwei;Cao, Yijia
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.547-557
    • /
    • 2018
  • This work proposes a control method of frequency stabilization for grid integration of large-scale wind farms via the voltage source converter-based high-voltage direct current (VSC-HVDC) technology. First, the topology of grid integration of a large-scale wind farm via the VSC-HVDC link is provided, and simple control strategies for wind turbines, wind farm side VSC (WFVSC), and grid side VSC are presented. Second, a mathematical model between the phase angle of WFVSC and the frequency of the wind farm is established. The control principle of the large-scale wind power integrated system is analyzed in theory in accordance with the mathematical model. Third, frequency and AC voltage controllers of WFVSC are designed based on the mathematical model of the relationships between the phase angle of WFVSC and the frequency of the wind farm, and between the modulation index of WFVSC and the voltage of the wind farm. Corresponding controller structures are established by deriving a transfer function, and an optimization method for selecting the parameters of the frequency controller is presented. Finally, a case study is performed under different operating conditions by using the DIgSILENT/PowerFactory software. Results show that the proposed control method has good performance in the frequency stabilization of the large-scale wind power integrated system via the VSC-HVDC technology.