• Title/Summary/Keyword: Voltage Doubler

Search Result 118, Processing Time 0.029 seconds

Gyro HV Power Supply Design for Attitude Control in the Satellite (위성 자세제어용 자이로 HVPS 설계)

  • Kim, Eui-Chan;Koo, Ja-Chun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.109-113
    • /
    • 2007
  • In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of Flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design, and voltage doubler circuit.

  • PDF

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Development of Electronic Ballast for Automotive HID lamp using Holt Bridge Inverter (Half Bridge 구조를 이용한 자동차 헤드라이트용 전자식 안정기 개발)

  • 조계현;박종연;박재일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.10-16
    • /
    • 2003
  • An electronic ballast for driving automotive HID lamps is presented. The circuit topology is composed of a fly back converter, a half bridge inverter, and igniter using voltage doubler. A prototype was developed and tested on a 35W lamp with a 12V input voltage. To avoiding acoustic resonance the half bridge inverter is operated at 400Hz and provided a squared-wave voltage source to the lamp. The transient and steady state characteristics of the tested HID lapm are measured and analyzed.

Single Power-conversion AC-DC Converter with High Power Factor (고역률을 갖는 단일 전력변환 AC-DC 컨버터)

  • Cho, Yong-Won;Park, Chun-Yoon;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • This paper proposes a single power-conversion ac-dc converter with a dc-link capacitor-less and high power factor. The proposed converter is derived by integrating a full-bridge diode rectifier and a series-resonant active-clamp dc-dc converter. To obtain a high power factor without a power factor correction circuit, this paper proposes a suitable control algorithm for the proposed converter. The proposed converter provides single power-conversion by using the proposed control algorithm for both power factor correction and output control. Also, the active-clamp circuit clamps the surge voltage of switches and recycles the energy stored in the leakage inductance of the transformer. Moreover, it provides zero-voltage turn-on switching of the switches. Also, a series-resonant circuit of the output-voltage doubler removes the reverse-recovery problem of the output diodes. The proposed converter provides maximum power factor of 0.995 and maximum efficiency of 95.1% at the full-load. The operation principle of the converter is analyzed and verified. Experimental results for a 400W ac-dc converter at a constant switching frequency of 50kHz are obtained to show the performance of the proposed converter.

Characteristics Analysis of Class E Frequency Multiplier using FET Switch Model (FET 스위치 모델을 이용한 E급 주파수 체배기 특성 해석)

  • Joo, Jae-Hyun;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.596-601
    • /
    • 2011
  • This paper has presented research results for the switching mode class E frequency multiplier that has simple circuit structure and high efficiency. Frequency multiplication is coming from the nonlinearity of the active component, and this paper models the FET active component as a simple switch and some parasitics to analyze the characteristics. The matching component parameters for the class E frequency doubler have been derived with modeling the FET as a input controlled switch and some parasitics. A circuit simulator, ADS, is used to simulate the output voltage and current waveform and efficiency with the variation of the parasitic values. With 2.9GHz input and 2V bias, the drain efficiency has been decreased from 98% to 28% with changing the parasitic capacitance from 0pF to 1pF at 5.8GHz output, which shows that the parasitic capacitance CP has the most significant effect on the efficiency among the parasitics of FET.

New PCS Applied High Boost Ratio Dual Converter and Single Phase Half Bridge Inverter (고승압 듀얼 컨버터와 단상 하프 브릿지 인버터를 적용한 새로운 PCS)

  • Lee, Hee-Jun;Shin, Soo-Choel;Hyun, Seung-Wook;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.515-522
    • /
    • 2013
  • In this paper, a new PCS is proposed which is consisted of high boost dual converter and single phase half-bridge inverter. The proposed PCS is configured in parallel input / serial output, using two interleaved voltage doubler converter. Converter of the proposed PCS is distribute input current by configuring parallel input and reduced turn ratio of transformer by configuring serial output. Also, compositions of the inverter are composed of serial output capacitor of converter and half-bridge inverter. The dual converter and single phase half-bridge inverter is designed and characteristic of the new PCS is analysed. The system of the 1.5[kW] PCS is verified through an experimental about operation and stability.

A Study on the new structure Voltage Controlled Hair-pin Resonator Oscillator using parallel feedback of second-harmonic (2차 고조파의 병렬 궤환을 이용한 새로운 구조의 전압 제어 Hair-pin 공진 발진기에 관한 연구)

  • 민준기;하성재;이근태;안창돈;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.530-534
    • /
    • 2002
  • In the thesis, For improving the Stability of VCHRO(Voltage Controlled Hair-pin Resonator Oscillator) the new structure using the parallel feedback of the second harmonic is proposed for self-phase locking effect. This module is composed of wilkinson divider, frequency doubler, directional coupler, and bandpass filter using a hair-pin resonator, which are integrated into miniaturized hybrid circuit. The module exhibits output power of 2.5 dBm at 19.5 GHz, -29.83 dBc fundamental frequency suppression and -76.52 dBc/Hz phase noise at 10 kHz offset frequency from carrier of center frequency 19.5 GHz.

Interleaved DC-DC Converters with Partial Ripple Current Cancellation

  • Lin, Bor-Ren;Chiang, Huann-Keng;Cheng, Chih-Yuan
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.249-257
    • /
    • 2012
  • An interleaved PWM converter is proposed to implement the features of zero voltage switching (ZVS), load current sharing and ripple current reduction. The proposed converter includes two ZVS converters with a common clamp capacitor. With the shared capacitor, the charge balance of the two interleaved parts is automatically regulated under input voltage and load variations. The active-clamping circuit is used to realize the ZVS turn-on so that the switching losses on the power switches are reduced. The ZVS turn-on of all of the switching devices is achieved during the transition interval. The interleaved pulse-width modulation (PWM) operation will reduce the ripple current and the size of the input and output capacitors. The current double rectifier (CDR) is adopted in the secondary side to reduce output ripple current so that the sizes of the output chokes and capacitor are reduced. The circuit configuration, operation principles and design considerations are presented. Finally experimental results based on a 408W (24V/17A) prototype are provided to verify the effectiveness of the proposed converter.

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

  • Yoo, Junghwan;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.98-104
    • /
    • 2017
  • This work describes the development and comparison of two phase-locked loops (PLLs) based on a 65-nm CMOS technology. The PLLs incorporate two different topologies for the output voltage-controlled oscillator (VCO): LC cross-coupled and differential Colpitts. The measured locking ranges of the LC cross-coupled VCO-based phase-locked loop (PLL1) and the Colpitts VCO-based phase-locked loop (PLL2) are 119.84-122.61 GHz and 126.53-129.29 GHz, respectively. Th e output powers of PLL1 and PLL2 are -8.6 dBm and -10.5 dBm with DC power consumptions of 127.3 mW and 142.8 mW, respectively. Th e measured phase noise of PLL1 is -59.2 at 10 kHz offset and -104.5 at 10 MHz offset, and the phase noise of PLL2 is -60.9 dBc/Hz at 10 kHz offset and -104.4 dBc/Hz at 10 MHz offset. The chip sizes are $1,080{\mu}m{\times}760{\mu}m$ (PLL1) and $1,100{\mu}m{\times}800{\mu}m$ (PLL2), including the probing pads.

Development of Planar Transformer and SiC Based 3 kW High Power Density DC-DC Converter for Electric Vehicles (플라나변압기와 SiC 기반의 전기자동차용 3kW 고전력밀도 DC-DC 컨버터 개발)

  • Kim, Sangjin;Suk, Chaeyoung;Hakim, Ramadhan Muhammad;Choi, Sewan;Ryu, Byoungwoo;Park, Sanghun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.112-119
    • /
    • 2021
  • This study proposes a design method of high-power-density and high-efficiency low-voltage DC-DC converters using SiC MOSFET and the optimized planar transformer design procedure based on the figure-of-merit. The secondary rectifying circuit of the phase-shifted full-bridge converter is compared to achieve high power density and high efficiency, and the phase-shifted full bridge converter with a current-doubler rectifier is selected. The planar transformer is designed by the proposed optimized design procedure and verified by FEA simulation. To validate the proposed design method, experimental results from a 3 kW prototype are provided. The prototype achieved 95.28% maximum efficiency and a power density of 2.98 kW/L.