• Title/Summary/Keyword: Voltage Doubler

Search Result 118, Processing Time 0.024 seconds

A New High Efficiency Phase Shifted Full Bridge Converter for a Power Sustaining Module of Plasma Display Panel

  • Lee Woo-Jin;Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2006
  • A new high efficiency phase shifted full bridge (PSFB) converter for the power sustaining module of a plasma display panel (PDP) is proposed in this paper. The proposed converter employs a voltage doubler rectifier without an output inductor. Since it has no output inductor, the voltage stresses of the secondary rectifier diodes can be clamped at the output voltage level. No dissipative resistor-capacitor (RC) snubber for rectifier diodes is needed. Therefore, high efficiency, as well as, a low noise output voltage can be realized. Due to the elimination of the large output inductor, it features a simple structure, lower cost, smaller mass and lighter weight. Furthermore, the proposed converter has wide zero voltage switching (ZVS) ranges with low current stresses of the primary switches. Also the resonance between the leakage inductor of the transformer and the capacitor of the voltage doubler cell reduces the current stresses of the rectifier diodes. In this paper, operational principles, an analysis of the proposed converter and experimental results are presented.

Mathematical Analysis of LLC Series Resonant Converter with Current Doubler Rectifier using Coupled Inductor (Coupled Inductor를 활용한 배전류 정류 회로를 적용한 LLC 직렬 공진 컨버터의 수식화 해석)

  • Shin, Jung-Yoon;Hwang, Soon-Sang;Yoon, Byung-Chul;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.440-449
    • /
    • 2014
  • This study proposes an LLC series resonant converter with a current doubler using a coupled inductor as a rectification circuit for the secondary side. The current doubler circuit is generally used for a high-voltage input and low-voltage output circuit to obtain high efficiency with small transformer turn ratio. However, an inductive circuit is not generally used in the secondary side of an LLC series resonant converter. If inductive components exist on the secondary side, the resonant characteristics are changed through the secondary inductive circuit. Mathematical analysis shows that the secondary-side current doubler with coupled inductor is not affected by the resonant characteristic of the primary LLC if leakage inductance occurs in the coupled inductor. Results of the analysis are proven by simulation; an experiment is also conducted for the proposed circuit.

Overstress-Free 4 × VDD Switch in a Generic Logic Process Supporting High and Low Voltage Modes

  • Song, Seung-Hwan;Kim, Jongyeon;Kim, Chris H.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.664-670
    • /
    • 2015
  • A four-times-VDD switch that supports high and low voltage mode operations is demonstrated in a generic 65 nm logic process. The proposed switch shows the robust operation for supply voltages ranging from VDD to $4{\times}VDD$. A cascaded voltage switch and a voltage doubler based charge pump generate the intermediate supply voltage levels required for the proposed high voltage switch. All the high voltage circuits developed in this work can be implemented using standard logic transistors without being subject to any voltage overstress.

Design of K-band VCO using HFSS modeling of dielectric resonator and frequency doubler (유전체 공진기의 HFSS 모델링을 이용한 2체배된 K밴드 VCO 연구)

  • 강성민;전종환;구경헌
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.7-10
    • /
    • 2002
  • This paper presents a design of 24㎓ GaAs MESFET voltage controlled oscillator using a dielectric resonator(DR) and a frequency doubler. DR modeling has been done to get the effects of resonator size and the gap from transmission line by HFSS at 12㎓, and frequency doubler is used to get 24㎓ Output.

  • PDF

A study on asymmetric Half-Bridge converter with Current-Doubler rectifier (Current-Doubler 정류방식을 적용한 ZVS 비대칭 하프브리지 컨버터에 관한 연구)

  • Lee, Dae-Hyuk;Kim, Yong;Bae, Jin-Yong;Kwon, Soon-Do;Lee, Kyu-Hoon;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.169-172
    • /
    • 2004
  • This paper presents the Asymmetric Half-Bridge converter using current-doubler rectifier. Resonant conditions of the asymmetrical soft switching Half-Bridge converter is analyzed. Current-doubler converter has small voltage and current ripple. The comparison of topology compared to the secondary rectification for center-tap type and current-doubler type are discussed. Experimental result are obtained on a 5V, 20A DC/DC Half-Bridge converter MOSFET based prototype for the 100W.

  • PDF

Digital Control Strategy for Single-phase Voltage-Doubler Boost Rectifiers

  • Cho, Young-Hoon;Mok, Hyung-Soo;Ji, Jun-Keun;Lai, Jih-Sheng
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.623-631
    • /
    • 2012
  • In this paper, a digital controller design procedure is presented for single-phase voltage-doubler boost rectifiers (VDBR). The model derivation of the single-phase VDBR is performed in the s-domain. After that the simplified equivalent z-domain models are derived. These z-domain models are utilized to design the input current and the output dc-link voltage controllers. For the controller design in the z-domain, the traditional K-factor method is modified by considering the nature of the digital controller. The frequency pre-warping and anti-windup techniques are adapted for the controller design. By using the proposed method, the phase margin and the control bandwidth are accurately achieved as required by controller designers in a practical frequency range. The proposed method is applied to a 2.5 kVA single-phase VDBR for Uninterruptible Power Supply (UPS) applications. From the simulation and the experimental results, the effectiveness of the proposed design method has been verified.

A New Single-Stage PFC AC/DC Converter with Low Link-Capacitor Voltage

  • Lee, Byoung-Hee;Kim, Chong-Eun;Park, Ki-Bum;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 2007
  • A conventional Single-Stage Power-Factor-Correction (PFC) AC/DC converter has a link capacitor voltage problem under high line input and low load conditions. In this paper, this problem is analyzed by using the voltage conversion ratio of the DC/DC conversion cell. By applying this analysis, a new Single-Stage PFC AC/DC converter with a boost PFC cell integrated with a Voltage-Doubler Rectified Asymmetrical Half-Bridge (VDRAHB) is proposed. The proposed converter features good power factor correction, low current harmonic distortions, tight output regulations and low voltage of the link capacitor. An 85W prototype was implemented to show that it meets harmonic requirements and standards satisfactorily with near unity power factor and high efficiency over universal input.

A Study on Open-frame Type DC-DC Converter Module for Low-Voltage High-Current Applications (저전압 대전류용 개방형 DC-DC 컨버터 모듈에 관한 연구)

  • 안태영;황선민;조인호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.183-190
    • /
    • 2003
  • We report the performance of an open-frame type low-voltage high-current DC-DC converter module developed using an active clamp forward converter circuit and current doubler rectifier. The converter module is designed with the specifications of an 1.8V output voltage, 25A output current, and 36-75V input voltage. The synchronous rectifier is used to reduce the conduction fuss at high current level and current-mode control is adapted to enhance the flexibility in the system configuration. A prototype converter module is successfully implemented within 10mm height and half brick size (58${\times}$61mm), and recorded an 84% efficiency and 4% voltage regulation for the entire input voltage range, thereby demonstrating its application potentials to future telecommunication electronics.

A Study on Open-frame Type DC-DC Converter Module for Low-Voltage High-Current Applications (저전압 대전류용 개방형 DC-DC 컨버터 모듈에 관한 연구)

  • 안태영;황선민;조인호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.183-183
    • /
    • 2003
  • We report the performance of an open-frame type low-voltage high-current DC-DC converter module developed using an active clamp forward converter circuit and current doubler rectifier. The converter module is designed with the specifications of an 1.8V output voltage, 25A output current, and 36-75V input voltage. The synchronous rectifier is used to reduce the conduction fuss at high current level and current-mode control is adapted to enhance the flexibility in the system configuration. A prototype converter module is successfully implemented within 10mm height and half brick size (58×61mm), and recorded an 84% efficiency and 4% voltage regulation for the entire input voltage range, thereby demonstrating its application potentials to future telecommunication electronics.