• Title/Summary/Keyword: Voltage Compensator

Search Result 401, Processing Time 0.033 seconds

Feedback control for initially unengaged vertical comb type electrostatic scanner (초기 비결합된 수직빗살 전극형 정전 스캐너의 거동제어)

  • Lee, Byeung-Leul;Won, Jongw-Ha;Cho, Jin-Woo;Jeong, Hee-Mun;Cho, Yong-Chol;Lee, Jin-Ho;Go, Young-Chol
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.845-846
    • /
    • 2006
  • In this paper, we describe a capacitive position sensing and motion control scheme of a MEMS scanner used for laser display application. The laser displays can be made by scanning laser beams much the same way a CRT scans electron beams. So the accuracy of the scanner motion determines the quality of the displayed image. The MEMS scanner under consideration is composed of electrostatic comb electrodes with initial gap and requires large driving voltage. Due to the under-damping and nonlinear driving characteristics, the scanner motion is subject to be an unwanted oscillation. For the linear scanner motion, we devise a differential charge amplifier and phase compensator. The experimental results show that the implemented feedback control system provides sufficient electrical damping and improves the dynamic performance of the scanner.

  • PDF

Robust Stability Analysis of STATCOM System for Power Quality Enhancement (전력 품질 개선을 위한 STATCOM 시스템의 강인 안정도 해석)

  • Sung, Hwa-Chang;Park, Jin-Bae;Tak, Myung-Hwan;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.220-225
    • /
    • 2010
  • This paper deals with the robust stability analysis of STATCOM (Static Synchronous Compensator) power system for power quality enhancement and power system stability. The STATCOM plays an important role in controlling the reactive power flow to the power network and hence the system voltage fluctuations and stability. The control areas of this plant are very large and the overall composition of the system is nonlinear. Also, STATCOM is influence of the uncertainties so that it is necessary to apply the new control technique. For solving these problems, we perform the fuzzy modeling and robust analysis for STATCOM system.

A New Control Strategy for a Three-Phase PWM Current-Source Rectifier in the Stationary Frame

  • Guo, Qiang;Liu, Heping;Zhang, Yi
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.994-1005
    • /
    • 2015
  • This paper presents a novel power control strategy for PWM current-source rectifiers (CSRs) in the stationary frame based on the instantaneous power theory. In the proposed control strategy, a virtual resistance based on the capacitor voltage feedback is used to realize the active damping. In addition, the proportional resonant (PR) controller under the two-phase stationary coordinate is designed to track the ac reference current and to avoid the strong coupling brought about by the coordinate transformation. The limitations on improving steady-state performance of the PR controller is investigated and mitigated using a cascaded lead-lag compensator. In the z-domain, a straightforward procedure is developed to analyze and design the control-loop with the help of MATLAB/SISO software tools. In addition, robustness against parameter variations is analyzed. Finally, simulation and experimental results verify the proposed control scheme and design method.

AnActive Damping Scheme Based on a Second Order Resonant Integrator for LCL-Type Grid-Connected Converters

  • Chen, Chen;Xiong, Jian;Zhang, Kai
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1058-1070
    • /
    • 2017
  • This paper proposes a novel active damping scheme to suppress LCL-filter resonance with only grid-current feedback control in grid-connected voltage-source converters. The idea comes from the concept of the model reference adaptive control (MRAC). A detailed theoretical derivation is given, and the effectiveness of this method is explained based on its physical nature. According to the control structure of this method, the active damping compensator, which is essentially a second order resonant integrator (SORI) filter, provides an effective solution to damp LCL resonance and to eliminate the need for additional sensors. Compared with extra feedback methods, the cost and complexity are reduced. A straightforward tuning procedure for the active damping method has been presented. A stability analysis is illustrated in the discrete domain while considering a one-step delay. Finally, experimental results are presented to validate the analysis and to demonstrate the good performance of the proposed method.

Load-adaptive 180-Degree Sinusoidal Permanent-Magnet Brushless Motor Control Employing Automatic Angle Compensation

  • Kim, Minki;Oh, Jimin;Suk, Jung-Hee;Heo, Sewan;Yang, Yil Suk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.310-316
    • /
    • 2013
  • This paper reports a sinusoidal $180^{\circ}$ drive for a permanent magnet (PM) brushless motor employing automatic angle compensator to suppress the driving loss during the wide-range load operation. The proposed drive of the sinusoidal $180^{\circ}$ PM Brushless motor reduced the amplitude of the 3-phase current by compensating for the lead-angle of the fundamental waves of the 3-phase PWM signal. The conventional lead-angle method was implemented using the fixed angle or memorized table, whereas the proposed method was automatically compensated by calculating the angle of the current and voltage signal. The algorithm of the proposed method was verified in a 30 W PM brushless motor system using a PSIM simulator. The efficiency of the conventional method was decreased 90 % to 60 %, whereas that of proposed method maintained approximately 85 % when the load shift was 0 to $0.02N{\cdot}m$. Using an FPGA prototype, the proposed method was evaluated experimentally in a 30 W PM brushless motor system. The proposed method maintained the minimum phase RMS current and 79 % of the motor efficiency under 0 to $0.09N{\cdot}m$ load conditions. The proposed PM brushless motor driving method is suitable for a variety of applications with a wide range of load conditions.

  • PDF

DCM DC-DC Converter for Mobile Devices (모바일 기기용 DCM DC-DC Converter)

  • Jung, Jiteck;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.319-325
    • /
    • 2020
  • In this paper, a discontinuous-conduction mode (DCM) DC-DC buck converter is presented for mobile device applications. The buck converter consists of compensator for stable operations, pulse-width modulation (PWM) logic, and power switches. In order to achieve small hardware form-factor, the number of off-chip components should be kept to be minimum, which can be realized with simple and efficient frequency compensation and digital soft start-up circuits. Burst-mode operation is included for preventing the efficiency from degrading under very light load condition. The DCM DC-DC buck converter is fabricated with 0.18-um BCDMOS process. Programmable output with external resistors is typically set to be 1.8V for the input voltage between 2.8 and 5.0V. With a switching frequency of 1MHz, measured maximum efficiency is 92.6% for a load current of 100mA.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

A Study on Damping Improvement of a Synchronous Generator with Static VAR Compensator using a Fuzzy-PI Controller (퍼지-PI 제어기를 이용하여 정지형 무효전력 보상기를 포함한 동기 발전기의 안정도 개선에 관한 연구)

  • 주석민;허동렬;김상효;정동일;정형환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2001
  • This paper resents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the must fiexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be barred on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and allied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.

  • PDF

Stable Standby-mode Implementation of Multi-output Power Supply using a New Load Current Estimation Technique with Linear Regulator (다중 출력 전원공급장치의 안정적 대기전력 구현을 위한 새로운 방식의 부하전류 측정기법 구현)

  • Lee, Jong-Hyun;Jung, An-Yeol;Kim, Dong-Joon;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.88-95
    • /
    • 2011
  • In this paper, a new standby-mode control method for multiple output switching-mode power-supply is suggested, which uses the control signal of the feedback compensator of the inner loop in the linear voltage regulator located at the transformer secondary side, as the load current information. Conventional method has a problem that standby mode occurs depending only on the load condition of the main controller output, which makes the other secondary side output very inaccurate by burst mode operation. The proposed method detects all the load current information and operates in burst mode only when the all of them are light load condition. Minimum of the additional components are required for the implementation of the proposed method because the load information is obtained from the existing feedback circuit of the post-stage linear regulator. In this paper, the operating principles of the proposed standby-mode circuit are presented with an numerical analysis, and are verified by 25W hardware prototype implementation.

Digitally Controlled Single-inductor Multiple-output Synchronous DC-DC Boost Converter with Smooth Loop Handover Using 55 nm Process

  • Hayder, Abbas Syed;Park, Young-Jun;Kim, SangYun;Pu, Young-Gun;Yoo, Sang-Sun;Yang, Youngoo;Lee, Minjae;Hwang, Keum Choel;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.821-834
    • /
    • 2017
  • This paper reports on a single-inductor multiple-output step-up converter with digital control. A systematic analog-to-digital-controller design is explained. The number of digital blocks in the feedback path of the proposed converter has been decreased. The simpler digital pulse-width modulation (DPWM) architecture is then utilized to reduce the power consumption. This architecture has several advantages because counters and a complex digital design are not required. An initially designed unit-delay cell is adopted recursively for the construction of coarse, intermediate, and fine delay blocks. A digital limiter is then designed to allow only useful code for the DPWM. The input voltage is 1.8 V, whereas output voltages are 2 V and 2.2 V. A co-simulation was also conducted utilizing PowerSim and Matlab/Simulink, whereby the 55 nm process was employed in the experimental results to evaluate the performance of the architecture.