• Title/Summary/Keyword: Voltage Compensator

Search Result 401, Processing Time 0.028 seconds

GA based Selection Method of Weighting Matrices in LQ Controller for SVC (GA를 이용한 SVC용 LQ 제어기의 가중행렬 선정 기법)

  • 허동렬;이정필;주석민;정형환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.40-50
    • /
    • 2002
  • In this paper, we present a GA(Genetic Algorithm) approach to select weighting matrices of an optimal LQ(Linear Quadratic) controller for SVC(Static VAR Compensator). A SVC, one of the FACTS(Flexible AC Transmission System), constructed by a FC(Fixed Capacitor) and a TCR(Thyristor Controlled Reactor), was designed and implemented to improve the damping of a synchronous generator, as well as to control the system voltage Also, a design of LQ controller depends on choosing weighting matrices. The selection of weighting matrices which is not a trivial solution is usually carried out by trial and error. We proposed an efficient method using GA of finding weighting matrices for optimal control law. Thus, we proved the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system by eigenvalues analysis and simulation.

Performance Analysis of load simulator interconnected with Power Quality Compensator (전력품질 보상기와 부하모의장치의 연계시험 분석)

  • Bae, Byung-Yeol;Cho, Yun-Ho;Park, Yong-Hee;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper describes a load simulator with power recovery capability, which is based on the voltage source converter-inverter set. The load simulator can save the electric energy that should be consumed to test the operation and performance of the power quality compensator and the power equipment. The load simulator consists of a converter-inverter set with a DSP controller for system control and PWM pulse generation. The converter operates as a universal load to model the linear load and the non-linear load, while the inverter feed the energy back to the power source with harmonic compensation. the performance of proposed load simulator was analyzed with scaled-model experiment, interconnected with the active power filter. The experimental results confirms that the proposed load simulator can be utilized to test the performance of active power filter.

Transient Stability Enhancement of Power System by Using Energy Storage System (풍력터빈 발전기가 연계된 전력계통에서 에너지저장시스템이 과도안정도에 미치는 영향)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.592-597
    • /
    • 2019
  • A conventional method to improve transient stability in power system is the use of reactive power compensation devices such as STATCOM and SVC. However, this traditional method cannot prevent a rapid voltage collapse brought on by motors stalling due to system fault. On the other hand, ESS(Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast active power compensation with energy storage system plays a significant role in transient stability enhancement after a major fault of power system. In this paper, transient stability enhancement method by using energy storage system is proposed for the power system including a dynamic load such as large motor. The effectiveness of energy storage system compared to conventional devices in enhancing transient stability of power system is presented. The results of simulations show that the simultaneous injection of active and reactive power can enhance more effectively transient stability.

Improved Programmable LPF Flux Estimator with Synchronous Angular Speed Error Compensator for Sensorless Control of Induction Motors (유도 전동기 센서리스 제어를 위한 동기 각속도 오차 보상기를 갖는 향상된 Programmable LPF 자속 추정기)

  • Lee, Sang-Soo;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • This paper proposes an improved stator flux estimator through ensuring conventional PLPF to act as a pure integrator for sensorless control of induction motors. Conventional PLPF uses the estimated synchronous speed as a cut-off frequency and has the gain and phase compensators. The gain and phase compensators are determined on the assumption that the estimated synchronous angular speed is coincident with the real speed. Therefore, if the synchronous angular speed is not same as the real speed, the gain and phase compensation will not be appropriate. To overcome the problem of conventional PLPF, this paper analyzes the relationship between the synchronous speed error and the phase lag error of the stator flux. Based on the analysis, this paper proposes the synchronous speed error compensation scheme. To achieve a start-up without speed sensor, the current model is used as the stator flux estimator at the standstill. When the motor starts up, the current model should be switched into the voltage model. So a stable transition between the voltage model and the current model is required. This paper proposes the simple transition method which determines the initial values of the voltage model and the current model at the transition moment. The validity of the proposed schemes is proved through the simulation results and the experimental results.

Analysis on the Effects of TRV and MOV in Real System with TCSC (TCSC가 적용된 실계통 시스템에서의 TRV와 MOV의 영향에 대한 분석)

  • Lee, Seok-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.41-46
    • /
    • 2019
  • The application of series compensator in a power system affects other devices such as circuit breakers transient recovery voltage (TRV) problem. In this paper, we analyze the TRV effect on a line circuit breaker in the cases with and without thyristor-controlled series capacitor (TCSC) via simulation, and suggest an effective method to overcome the increase of TRV due to the TCSC installation. It also discusses the impact of proposed protection on metal oxide varistor (MOV). A 345 kV transmission line in Korea was selected as a study case. Grid system was modelled using PSCAD (Power Systems Computer Aided Design) / EMTDC(Electro Magnetic Transient Direct Current). The TRV was analyzed by implementing a short circuit fault along the transmission line and at the breaker terminal. The proposed protection scheme, the TRV satisfies the standard. However, the MOV energy capacity increased as the delay time increased. This result can solve the TRV problem caused by the expected transmission line fault in a practical power system.

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.

A Study on the Leading Phase Operation of Single Phase PWM Converter Train (단상PWM컨버터 차량의 진상운전에 관한 연구)

  • Kim, Baik
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.357-363
    • /
    • 2012
  • This paper presents a new operation method for the single phase PWM(Pulse Width Modulation) converter train. Recently, the trains adopting the PWM converter have become the majority in the electric locomotives since there are distinct advantages over the predecessors, which can be operated at near unity power factor. However, a slight modification of the control scheme makes this kind of vehicles run in the region of leading power factor. Although this feature seems to be of no significant use by itself, the leading phase operation can improve the voltage profile and the line loss of the feeding systems is decreased by compensating the reactive power loss along the line when it considered together with the feeding systems. This method is even more economical and efficient comparing with the installation of SVC that is mainly used for this purpose since the train can become a movable compensator. With the conditions and some essential formula for the leading phase operation, a new power factor control algorithm has been proposed to implement this scheme. The results of simulation through SIMULINK model show that the proposed method is suitable enough for practical use.

A Stable Operation Strategy in Micro-grid Systems without Diesel Generators

  • Choi, Sung-Sik;Kang, Min-Kwan;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.114-123
    • /
    • 2018
  • Recently, as one of the countermeasures to reduce carbon dioxide($CO_2$) for global warming problems, operation methods in micro-grid systems replacing diesel generator with renewable energy sources including wind power(WP) and photovoltaic(PV) system have been studied and presented in energetic manners. However, it is reported that some operation problems in micro-grid systems without diesel generator for carbon-free island are being occurred when large scaled WP systems are at start-up. To overcome these problems, this paper proposes an operation strategy in micro-grid systems by adapting control devices such as CVCF(constant voltage constant frequency) ESS(energy storage system) for constant frequency and voltage regulation, load control ESS for balancing demand and supply and SVC(static-var compensator) for reactive power compensation. From the simulation results based on the various operation scenarios, it is confirmed that the proposed operation strategy in micro-grid systems without diesel generators is a useful tool to perform a stable operation in micro-grid systems without diesel generator and also make a contribution to reduce carbon dioxide in micro-grid systems.

A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters (디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF

A Study on the Compensation Control of Distribution Static Compensator Considering Induction Motor Load Using PSCAD/EMTDC (PACAD/EMTDC을 이용한 유도기 부하를 고려한 DSTATCOM의 보상제어에 관한 연구)

  • Lee, Myung-Un;Cho, Myung-Hyun
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.32-38
    • /
    • 2006
  • When induction motor moves, power quality decline of line is risen seriously because provoking voltage drop the moment to system power supply by excessive moving current as well as power-factor drop in case drive by light-load because current reaches in 6 times $\sim$ 8 times of rated current. In this paper, a modeling did an distribution system 13 bus type model and induction machine load presents in IEEE using a PSCAD/EMTDE package, and it displayed an accident conspiracy and a compensating factor of DSTATCOM through simulation show.