• Title/Summary/Keyword: Volcano eruption

Search Result 96, Processing Time 0.025 seconds

The 2014 Eruption and Precursors of Ontake Volcano, Japan (일본 온타케 화산의 2014년 분화와 전조현상)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheol-Woo
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.405-418
    • /
    • 2014
  • Ontake Volcano, Japan, began to erupt without any precursors on September 27, 2014, at 11:52 AM, and it caused many losses of life. Although Japan's preparation manual and prevention for volcanic eruptions and volcanic hazards has been well established, it could not prevent damage due to the sudden eruption of the volcano. Soon after the eruption, however, Japan Meteorological Agency (JMA) led many organizations and institutions, including JMA's Volcanic Eruption Prediction Liaison Council, Meteorological Research Institute (MRI) and National Agriculture and Food Research Organization and they understood the eruption situation quickly and shared the information based on their close cooperation and contact systems. Through these efforts, JMA published the unified result to the public, informing the public of the situation around the volcano and about the eruption and of how the residents and climbers around the volcano should react to the volcanic hazards caused by the eruption. The Korean Government can learn how to respond to a future eruption of a volcano, such as Mt. Baekdu which has the potential to erupt in the foreseeable future.

DEFORMATION OF AUGUSTINE VOLCANO, ALASKA, 1992-2006, MEASURED BY ERS AND ENVISAT SAR INTERFEROMETRY

  • Lee, Chang-Wook;Lu, Zhong;Kwoun, Oh-Ig
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.582-585
    • /
    • 2006
  • Augustine volcano is an active stratovolcano located southwest of Anchorage, Alaska. Augustine volcano experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. To measure ground surface deformation of Augustine volcano, we applied satellite radar interferometry with ERS-1/2 and ENVISAT SAR images acquired from three descending and three ascending satellite tracks. Multiple interferograms are stacked to reduce artifacts due to changes in atmospheric condition and retrieve temporal deformation sequence. For this, we used Least Square (LS) method for reducing atmospheric effects and Singular Value Decomposition (SVD) method for the retrieval of a temporal deformation sequence. Interferograms before 2006 eruption show about 3 cm/year subsidence by contraction of pyroclastic flow deposits from the 1986 eruption. Interferograms during 2006 eruption do not show significant deformation around volcano crater. Interferograms after 2006 eruption show again a several cm subsidence by compaction and contraction of pyroclastic flow deposits for a few months. This study demonstrates that satellite radar interferometry can monitor deformation of Augustine volcano to help understand the magma plumbing system driving surface deformation.

  • PDF

Monitoring Mount Sinabung in Indonesia Using Multi-Temporal InSAR

  • Lee, Chang-Wook;Lu, Zhong;Kim, Jin Woo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • Sinabung volcano in Indonesia was formed due to the subduction between the Eurasian and Indo-Australian plates along the Pacific Ring of Fire. After being dormant for about 400 years, Sinabung volcano erupted on the 29th of August, 2010 and most recently on the 1st of November, 2016. We measured the deformation of Sinabung volcano using Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar(ALOS/PALSAR) interferometric synthetic aperture radar(InSAR) images acquired from February 2007 to January 2011. Based on multi-temporal InSAR processing, we mapped the ground surface deformation before, during, and after the 2010 eruption with time-series InSAR technique. During the 3 years before the 2010 eruption, the volcano inflated at an average rate of ~1.7 cm/yr with a markedly higher rate of 6.6 cm/yr during the 6 months prior to the 2010 eruption. The inflation was constrained to the top of the volcano. From the 2010 eruption to January 2011,the volcano subsided by approximately 3 cm (~6 cm/yr). We interpreted that the inflation was due to magma accumulation in a shallow reservoir beneath Sinabung. The deflation was attributed to magma withdrawal from the shallow reservoir during the eruption as well as thermo-elastic compaction of erupted material. This result demonstrates once again the utility of InSAR for volcano monitoring.

Eruption Cycles and Volcanic Form of the Dokdo Volcano, Korea (독도 화산의 분출윤회와 화산형태)

  • 황상구;전영권
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.527-536
    • /
    • 2003
  • The Dokdo volcano in the south-central part of the East Sea is classified into 8 rock units. The units and sequence suggest that the Dok Island forms a small stratovolcano constructed from at least 3 times eruption cycles above the sea level and proceeded with transformation of a few different eruption styles during each cycle. Reconstruction of the volcanic form, from the geologic structures and spatial lithofacies changes, suggests that the island is remnants of the southwestern caldera rim of the stratovolcano whose central part lies several hundred meters to the northeast. The subaqueous volcano shows abig guyot, which looks like a shield volcano, that represents gentle slope at 90-175 m deep and relatively steep one in 200∼2,000m, and 25∼30km wise base on sea floor. Therefore the total Dokdo volcano represents a multiple volcano that stratovolcano with small caldera overlies the big guyot.

SAR Measurements of Surface Displacements at Augustine Volcano, Alaska, Associated with the 1986 and 2006 Eruption

  • Lee, C.W.;Jung, H.S.;Won, J.S.;Lu, Z.;Kwoun, O.I.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.401-404
    • /
    • 2007
  • Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. The observed surface displacements from satellite radar interferometry were compared with GPS data. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano.

  • PDF

Growth of Zoysiagrass and Seashore Paspalum on Volcano Eruption Sand and Clayey Soil with Organic and Inorganic Fertilizers in Indonesia

  • Rahayu, Rahayu;Zuamah, Hidayatuz;Yang, Geun-Mo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.240-245
    • /
    • 2014
  • This study was carried out to determine the possible use of volcano eruption sand at Merapi mountain area compared with clayey soil, alfisol as turfgrass growing media. Indonesia has abundant source of eruption sand and clayey soil. Native zoysiagrass (Z. matrella) was collected from Sleman district and seashore paspalum (P. vaginatum) from Solo region. The experimental plots were treated with both organic and inorganic fertilizers. Zoysiagrass and seashore paspalum can grow on the mixture of eruption volcano sand and alfisol soil. Fertilizers application increased turf color, surface coverage rate and recovery rate of turfgrass. While fertilizer treated alfisol have no effect on the length and dry weight of zoysiagrass root. Mixing of volcano eruption sand on growing media resulted in longer root length, higher shoot dry weight of zoysiagrass than in alfisol soil. Type of fertilizer affected the pH, soil organic matter, total N, available P, available K and electrical conductivity of sand and alfisol after cultivation. Similarly to zoysiagrass, the recovery of seashore paspalum was increased by application of fertilizer, even the inorganic fertilizer showed faster recovery than organic fertilizer. Surface coverage of seashore paspalum was faster than that of zoysiagrass with or without fertilizer.

Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • The Baekdu volcano (2,750 m a.s.l.) is located on the border between Yanggando Province in North Korea and Jilin Province in China. Its eruption in 946 A.D. was among the largest and most violent eruptions in the past 5,000 years, with a volcanic explosivity index (VEI) of 7. In this study, we processed and analyzed lahar-inundation hazard zone data, applying a geographic information system program with menu-driven software (LAHARZ)to a shuttle radar topography mission 30 m digital elevation model. LAHARZ can simulate inundation hazard zones created by large lahar flows that originate on volcano flanks using simple input parameters. The LAHARZ is useful both for mapping hazard zones and estimating the extent of damage due to active volcanic eruption. These results can be used to establish evacuation plans for nearby residents without field survey data. We applied two different simulation methods in LAHARZ to examine six water systems near Baekdu volcano, selecting weighting factors by varying the ratio of height and distance. There was a slight difference between uniform and non-uniform ratio changes in the lahar-inundation hazard zone maps, particularly as slopes changed on the east and west sides of the Baekdu volcano. This result can be used to improve monitoring of volcanic eruption hazard zones and prevent disasters due to large lahar flows.

Detection for Region of Volcanic Ash Fall Deposits Using NIR Channels of the GOCI (GOCI 근적외선 채널을 활용한 화산재 퇴적지역 탐지)

  • Sun, Jongsun;Lee, Won-Jin;Park, Sun-Cheon;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1519-1529
    • /
    • 2018
  • The volcanic ash can spread out over hundreds of kilometers in case of large volcanic eruption. The deposition of volcanic ash may induce damages in urban area and transportation facilities. In order to respond volcanic hazard, it is necessary to estimate efficiently the diffusion area of volcanic ash. The purpose of this study is to compare in-situ volcanic deposition and satellite images of the volcanic eruption case. In this study, we used Near-Infrared (NIR) channels 7 and 8 of Geostationary Ocean Color Imager (GOCI) images for Mt. Aso eruption in 16:40 (UTC) on October 7, 2016. To estimate deposit area clearly, we applied Principal Component Analysis (PCA) and a series of morphology filtering (Eroded, Opening, Dilation, and Closing), respectively. In addition, we compared the field data from the Japan Meteorological Agency (JMA) report about Aso volcano eruption in 2016. From the results, we could extract volcanic ash deposition area of about $380km^2$. In the traditional method, ash deposition area was estimated by human activity such as direct measurement and hearsay evidence, which are inefficient and time consuming effort. Our results inferred that satellite imagery is one of the powerful tools for surface change mapping in case of large volcanic eruption.

Volcanological Interpretation of Historical Eruptions of Mt. Baekdusan Volcano (백두산의 역사시대 분화 기록에 대한 화산학적 해석)

  • Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.456-469
    • /
    • 2013
  • This study is performed to find out the eruptive events of the historical period recorded in literature, which have been recognized and regarded as ones from Mt. Baekdusan, and to make volcanological interpretations of the eruptive events. Since the Millennium eruption, more than 31 eruptive events have been discovered, most of which are Plinian eruptions with volcanic ash that dispersed into the regions in the vicinity of the volcano. The 1903 record includes the event of the phreatomagmatic or vulcanian eruption that occurred within the Cheonji caldera lake. Based on the eruption records of the historical period and the 2002 precursor unrest to volcanic eruptions, Mt. Baekdusan has been evaluated and regarded as an active volcano that has the potential to erupt in the future.

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.