• Title/Summary/Keyword: Volatility Smile

Search Result 10, Processing Time 0.02 seconds

Implied Volatility Function Approximation with Korean ELWs (Equity-Linked Warrants) via Gaussian Processes

  • Han, Gyu-Sik
    • Management Science and Financial Engineering
    • /
    • v.20 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • A lot of researches have been conducted to estimate the volatility smile effect shown in the option market. This paper proposes a method to approximate an implied volatility function, given noisy real market option data. To construct an implied volatility function, we use Gaussian Processes (GPs). Their output values are implied volatilities while moneyness values (the ratios of strike price to underlying asset price) and time to maturities are as their input values. To show the performances of our proposed method, we conduct experimental simulations with Korean Equity-Linked Warrant (ELW) market data as well as toy data.

Estimation of KOSPI200 Index option volatility using Artificial Intelligence (이기종 머신러닝기법을 활용한 KOSPI200 옵션변동성 예측)

  • Shin, Sohee;Oh, Hayoung;Kim, Jang Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1423-1431
    • /
    • 2022
  • Volatility is one of the variables that the Black-Scholes model requires for option pricing. It is an unknown variable at the present time, however, since the option price can be observed in the market, implied volatility can be derived from the price of an option at any given point in time and can represent the market's expectation of future volatility. Although volatility in the Black-Scholes model is constant, when calculating implied volatility, it is common to observe a volatility smile which shows that the implied volatility is different depending on the strike prices. We implement supervised learning to target implied volatility by adding V-KOSPI to ease volatility smile. We examine the estimation performance of KOSPI200 index options' implied volatility using various Machine Learning algorithms such as Linear Regression, Tree, Support Vector Machine, KNN and Deep Neural Network. The training accuracy was the highest(99.9%) in Decision Tree model and test accuracy was the highest(96.9%) in Random Forest model.

Barrier Option Pricing with Model Averaging Methods under Local Volatility Models

  • Kim, Nam-Hyoung;Jung, Kyu-Hwan;Lee, Jae-Wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.84-94
    • /
    • 2011
  • In this paper, we propose a method to provide the distribution of option price under local volatility model when market-provided implied volatility data are given. The local volatility model is one of the most widely used smile-consistent models. In local volatility model, the volatility is a deterministic function of the random stock price. Before estimating local volatility surface (LVS), we need to estimate implied volatility surfaces (IVS) from market data. To do this we use local polynomial smoothing method. Then we apply the Dupire formula to estimate the resulting LVS. However, the result is dependent on the bandwidth of kernel function employed in local polynomial smoothing method and to solve this problem, the proposed method in this paper makes use of model averaging approach by means of bandwidth priors, and then produces a robust local volatility surface estimation with a confidence interval. After constructing LVS, we price barrier option with the LVS estimation through Monte Carlo simulation. To show the merits of our proposed method, we have conducted experiments on simulated and market data which are relevant to KOSPI200 call equity linked warrants (ELWs.) We could show by these experiments that the results of the proposed method are quite reasonable and acceptable when compared to the previous works.

The Stochastic Volatility Option Pricing Model: Evidence from a Highly Volatile Market

  • WATTANATORN, Woraphon;SOMBULTAWEE, Kedwadee
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.685-695
    • /
    • 2021
  • This study explores the impact of stochastic volatility in option pricing. To be more specific, we compare the option pricing performance between stochastic volatility option pricing model, namely, Heston option pricing model and standard Black-Scholes option pricing. Our finding, based on the market price of SET50 index option between May 2011 and September 2020, demonstrates stochastic volatility of underlying asset return for all level of moneyness. We find that both deep in the money and deep out of the money option exhibit higher volatility comparing with out of the money, at the money, and in the money option. Hence, our finding confirms the existence of volatility smile in Thai option markets. Further, based on calibration technique, the Heston option pricing model generates smaller pricing error for all level of moneyness and time to expiration than standard Black-Scholes option pricing model, though both Heston and Black-Scholes generate large pricing error for deep-in-the-money option and option that is far from expiration. Moreover, Heston option pricing model demonstrates a better pricing accuracy for call option than put option for all level and time to expiration. In sum, our finding supports the outperformance of the Heston option pricing model over standard Black-Scholes option pricing model.

Modeling Implied Volatility Surfaces Using Two-dimensional Cubic Spline with Estimated Grid Points

  • Yang, Seung-Ho;Lee, Jae-wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2010
  • In this paper, we introduce the implied volatility from Black-Scholes model and suggest a model for constructing implied volatility surfaces by using the two-dimensional cubic (bi-cubic) spline. In order to utilize a spline method, we acquire grid (knot) points. To this end, we first extract implied volatility curves weighted by trading contracts from market option data and calculate grid points from the extracted curves. At this time, we consider several conditions to avoid arbitrage opportunity. Then, we establish an implied volatility surface, making use of the two-dimensional cubic spline method with previously estimated grid points. The method is shown to satisfy several properties of the implied volatility surface (smile, skew, and flattening) as well as avoid the arbitrage opportunity caused by simple match with market data. To show the merits of our proposed method, we conduct simulations on market data of S&P500 index European options with reasonable and acceptable results.

VALUATION FUNCTIONALS AND STATIC NO ARBITRAGE OPTION PRICING FORMULAS

  • Jeon, In-Tae;Park, Cheol-Ung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.249-273
    • /
    • 2010
  • Often in practice, the implied volatility of an option is calculated to find the option price tomorrow or the prices of, nearby' options. To show that one does not need to adhere to the Black- Scholes formula in this scheme, Figlewski has provided a new pricing formula and has shown that his, alternating passive model' performs as well as the Black-Scholes formula [8]. The Figlewski model was modified by Henderson et al. so that the formula would have no static arbitrage [10]. In this paper, we show how to construct a huge class of such static no arbitrage pricing functions, making use of distortions, coherent risk measures and the pricing theory in incomplete markets by Carr et al. [4]. Through this construction, we provide a more elaborate static no arbitrage pricing formula than Black-Sholes in the above scheme. Moreover, using our pricing formula, we find a volatility curve which fits with striking accuracy the synthetic data used by Henderson et al. [10].

OPTION PRICING UNDER GENERAL GEOMETRIC RIEMANNIAN BROWNIAN MOTIONS

  • Zhang, Yong-Chao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1411-1425
    • /
    • 2016
  • We provide a partial differential equation for European options on a stock whose price process follows a general geometric Riemannian Brownian motion. The existence and the uniqueness of solutions to the partial differential equation are investigated, and then an expression of the value for European options is obtained using the fundamental solution technique. Proper Riemannian metrics on the real number field can make the distribution of return rates of the stock induced by our model have the character of leptokurtosis and fat-tail; in addition, they can also explain option pricing bias and implied volatility smile (skew).

Information in the Implied Volatility Curve of Option Prices and Implications for Financial Distribution Industry (옵션 내재 변동성곡선의 정보효과와 금융 유통산업에의 시사점)

  • Kim, Sang-Su;Liu, Won-Suk;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose - The purpose of this paper is to shed light on the importance of the slope and curvature of the volatility curve implied in option prices in the KOSPI 200 options index. A number of studies examine the implied volatility curve, however, these usually focus on cross-sectional characteristics such as the volatility smile. Contrary to previous studies, we focus on time-series characteristics; we investigate correlation dynamics among slope, curvature, and level of the implied volatility curve to capture market information embodied therein. Our study may provide useful implications for investors to utilize current market expectations in managing portfolios dynamically and efficiently. Research design, data, and methodology - For our empirical purpose, we gathered daily KOSPI200 index option prices executed at 2:50 pm in the Korean Exchange distribution market during the period of January 2, 2004 and January 31, 2012. In order to measure slope and curvature of the volatility curve, we use approximated delta distance; the slope is defined as the difference of implied volatilities between 15 delta call options and 15 delta put options; the curvature is defined as the difference between out-of-the-money (OTM) options and at-the-money (ATM) options. We use generalized method of moments (GMM) and the seemingly unrelated regression (SUR) method to verify correlations among level, slope, and curvature of the implied volatility curve with statistical support. Results - We find that slope as well as curvature is positively correlated with volatility level, implying that put option prices increase in a downward market. Further, we find that curvature and slope are positively correlated; however, the relation is weakened at deep moneyness. The results lead us to examine whether slope decreases monotonically as the delta increases, and it is verified with statistical significance that the deeper the moneyness, the lower the slope. It enables us to infer that when volatility surges above a certain level due to any tail risk, investors would rather take long positions in OTM call options, expecting market recovery in the near future. Conclusions - Our results are the evidence of the investor's increasing hedging demand for put options when downside market risks are expected. Adding to this, the slope and curvature of the volatility curve may provide important information regarding the timing of market recovery from a nosedive. For financial product distributors, using the dynamic relation among the three key indicators of the implied volatility curve might be helpful in enhancing profit and gaining trust and loyalty. However, it should be noted that our implications are limited since we do not provide rigorous evidence for the predictability power of volatility curves. Meaning, we need to verify whether the slope and curvature of the volatility curve have statistical significance in predicting the market trough. As one of the verifications, for instance, the performance of trading strategy based on information of slope and curvature could be tested. We reserve this for the future research.

A Study of Option Pricing Using Variance Gamma Process (Variance Gamma 과정을 이용한 옵션 가격의 결정 연구)

  • Lee, Hyun-Eui;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • Option pricing models using L$\acute{e}$evy processes are suggested as an alternative to the Black-Scholes model since empirical studies showed that the Black-Sholes model could not reflect the movement of underlying assets. In this paper, we investigate whether the Variance Gamma model can reflect the movement of underlying assets in the Korean stock market better than the Black-Scholes model. For this purpose, we estimate parameters and perform likelihood ratio tests using KOSPI 200 data based on the density for the log return and the option pricing formula proposed in Madan et al. (1998). We also calculate some statistics to compare the models and examine if the volatility smile is corrected through regression analysis. The results show that the option price estimated under the Variance Gamma process is closer to the market price than the Black-Scholes price; however, the Variance Gamma model still cannot solve the volatility smile phenomenon.

Option Pricing with Leptokurtic Feature (급첨 분포와 옵션 가격 결정)

  • Ki, Ho-Sam;Lee, Mi-Young;Choi, Byung-Wook
    • The Korean Journal of Financial Management
    • /
    • v.21 no.2
    • /
    • pp.211-233
    • /
    • 2004
  • This purpose of paper is to propose a European option pricing formula when the rate of return follows the leptokurtic distribution instead of normal. This distribution explains well the volatility smile and furthermore the option prices calculated under the leptokurtic distribution are shown to be closer to the market prices than those of Black-Scholes model. We make an estimation of the implied volatility and kurtosis to verify the fitness of the pricing formula that we propose here.

  • PDF