• 제목/요약/키워드: Volatile Organic Compound

검색결과 268건 처리시간 0.019초

Screening of Volatile Organic Compound-Producing Yeasts and Yeast-Like Fungi against Aflatoxigenic Aspergillus flavus

  • Nasanit, Rujikan;Jaibangyang, Sopin;Onwibunsiri, Tikamporn;Khunnamwong, Pannida
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.202-210
    • /
    • 2022
  • Aflatoxin contamination in rice has been documented in a number of studies, and has a high incidence in Asian countries, and as such, there has been a growing interest in alternative biocontrol strategies to address this issue. In this study, 147 strains of yeasts and yeast-like fungi were screened for their potential to produce volatile organic compounds (VOCs) active against Aspergillus flavus strains that produce aflatoxin B1 (AFB1). Five strains within four different genera showed greater than 50% growth inhibition of some strains of A. flavus. These were Anthracocystis sp. DMKU-PAL124, Aureobasidium sp. DMKU-PAL120, Aureobasidium sp. DMKU-PAL144, Rhodotorula sp. DMKU-PAL99, and Solicococcus keelungensis DMKU-PAL84. VOCs produced by these microorganisms ranged from 4 to 14 compounds and included alcohols, alkenes, aromatics, esters and furans. The major VOCs produced by the closely related Aureobasidium strains were found to bedistinct. Moreover, 2-phenylethanol was the most abundant compound generated by Aureobasidium sp. DMKU-PAL120, while methyl benzeneacetate was the major compound emitted from Aureobasidium sp. DMKU-PAL144. On the other hand, 2-methyl-1-butanol and 3-methyl-1-butanol were significant compounds produced by the other three genera. These antagonists apparently inhibited A. flavus sporulation and mycelial development. Additionally, the reduction of the AFB1 in the fungal-contaminated rice grains was observed after co-incubation with these VOC-producing strains and ranged from 37.7 ± 8.3% to 60.3 ± 3.4%. Our findings suggest that these same microorganisms are promising biological control agents for use against aflatoxin-producing fungi in rice and other agricultural products.

편백나무 목분을 첨가한 합성목재 패널의 제조 및 특성 평가 (Preparation and Characterizations of Wood Plastic Composite Panel Fabricated with Chamaecyparis obtusa Wood Flour)

  • 김수종
    • 융합정보논문지
    • /
    • 제12권5호
    • /
    • pp.126-132
    • /
    • 2022
  • 데크재, 산책로 등 옥외용도로 대부분 사용되고 있는 합성목재(Wood Plastic Compound;WPC)를 실내 용도의 건축용 내장재로 사용하기 위하여, 항균성, 총 휘발성 유기화합물 배출량(TVOC), 난연성 등이 개선된 WPC 패널을 제조하였다. 고밀도 폴리에틸렌(HDPE)과 편백나무 목분(Chamacyparis obtusa wood flour), 항균제 및 난연제 등의 첨가제를 혼합한 후 압출 성형하여 합성목재(Wood Plastic Composite) 컴파운드 펠렛을 제조하였다. 이 WPC 컴파운드 펠렛을 이축압출기를 사용하여 제조한 합성목재 패널(303mm×606mm×10mm)은 우수한 항균 및 항진균 특성을 나타냈다. 또한 패널의 총 휘발성 유기화합물 배출량(TVOC)은 0.062mg/m2·h 였으며, KS F 2271의 난연성 2등급 표준을 달성하였다.

Comparative analysis of volatile organic compounds from flowers attractive to honey bees and bumblebees

  • Dekebo, Aman;Kim, Min-Jung;Son, Minwoong;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • 제46권1호
    • /
    • pp.62-75
    • /
    • 2022
  • Background: Pollinators help plants to reproduce and support economically valuable food for humans and entire ecosystems. However, declines of pollinators along with population growth and increasing agricultural activities hamper this mutual interaction. Nectar and pollen are the major reward for pollinators and flower morphology and volatiles mediate the specialized plant-pollinator interactions. Limited information is available on the volatile profiles attractive to honey bees and bumblebees. In this study we analyzed the volatile organic compounds of the flowers of 9 different plant species that are predominantly visited by honey bees and bumblebees. The chemical compositions of the volatiles were determined using a head space gas chromatography-mass spectrometry (GC-MS) method, designed to understand the plant-pollinator chemical interaction. Results: Results showed the monoterpene 1,3,6-octatriene, 3,7-dimethyl-, (E) (E-𝞫-ocimene) was the dominating compound in most flowers analyzed, e.g., in proportion of 60.3% in Lonicera japonica, 48.8% in Diospyros lotus, 38.4% Amorpha fruticosa and 23.7% in Robinia pseudoacacia. Ailanthus altissima exhibited other monoterpenes such as 3,7-dimethyl-1,6-octadien-3-ol (𝞫-linalool) (39.1%) and (5E)-3,5-dimethylocta-1,5,7-trien-3-ol (hotrienol) (32.1%) as predominant compounds. Nitrogen containing volatile organic compounds (VOCs) were occurring principally in Corydalis speciosa; 1H-pyrrole, 2,3-dimethyl- (50.0%) and pyrimidine, 2-methyl- (40.2%), and in Diospyros kaki; 1-triazene, 3,3-dimethyl-1-phenyl (40.5%). Ligustrum obtusifolium flower scent contains isopropoxycarbamic acid, ethyl ester (21.1%) and n-octane (13.4%) as major compounds. In Castanea crenata the preeminent compound is 1-phenylethanone (acetophenone) (46.7%). Conclusions: Olfactory cues are important for pollinators to locate their floral resources. Based on our results we conclude monoterpenes might be used as major chemical mediators attractive to both honey bees and bumblebees to their host flowers. However, the mode of action of these chemicals and possible synergistic effects for olfaction need further investigation.

토양 흡착에 대한 유기탄소와 온도의 영향 (Influence of Organic Matter and Temperature on the Sorption of Volatile Organic Compounds on Soil)

  • 김희경
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1998년도 공동 심포지엄 및 추계학술발표회
    • /
    • pp.57-59
    • /
    • 1998
  • The headspace method has been acknowledged as a cost-effective and convenient method to analyze volatile organic compounds(VOCs) in soil. The headspace analysis is based on equilibrium partitioning of VOCs among water, air and soil in a closed system. However, the headspace method cannot be applied to soils where most of the VOCs remain sorbed even at high temperature. In this study, it was investigated how the sorption characteristics of VOCs varied with soil with different organic carbon contents and temperature. This study showed that all the VOCs were volatilized, not sorved, only in the soil with 5% organic carbon at 45$^{\circ}C$ or higher. Some fraction of VOCs remained in soil with 8% organic carbon at $65^{\circ}C$ of higher. Most of the VOCs remained sorbed in soil with 12% organic content even at 95$^{\circ}C$. This result suggested that the headspace method can be applied only to soils with little organic carbon content (less than 5%). In this case, 45$^{\circ}C$ seems to be high enough to volatilize all the VOCs from soil. Large particles still showed a significant sorption capacity for VOCs from soil. Large Particles still showed a significant sorption capacity for VOCs despite of their low level of organic carbon content. It was also shown that the organic carbon sorption coefficients (Koc) of VOCs varied with soils with different organic carbon content. This suggests that not only the organic matter content of soil but also the property of the organic matter in soil influence the sorption of VOCs to soil.

  • PDF

활성탄 흡착모델과 칼럼실험을 통한 Volatile Organic Compounds의 막확산계수와 표면확산계수의 도출 (Calculation of Film Diffusion Coefficients and Surface Diffusion Coefficients of Volatile Organic Compounds Using Activated Carbon Adsorption Model and Small Column Test)

  • 이병호;이준희
    • 상하수도학회지
    • /
    • 제13권1호
    • /
    • pp.72-80
    • /
    • 1999
  • Separation of VOCs(Volatile Organic Compounds) in Water Using Activated Carbon is known to be effective. Activated Carbon has been and will be employed in many water treatment plants. Simplified plug flow homogeneous surface diffusion model(PFHSDM) has been used to predict adsorption of organic matter. Finite Element Method(FEM) was used to analyze the model. Out of water quality control substances, benzene, toluene and tetrachloroethylene were used in the small column test. Film diffusion coefficients and surface diffusion coefficients were obtained from the column test, and were compared with the modeling results. Mc Cune, Williamson, William and Kataoka model, were compared with film diffusion coefficients obtained in the test. McCune model was fitted best for those VOCs used in this experiment. Film diffusion coefficients of VOCs obtained were benzene 0.265 cm/min, toluene 0.348 cm/min and tetrachloroethylene 0.298 cm/min. Surface diffusion coefficients of VOCs obtained were benzene $6.36{\times}10^{-8}cm^2/min$, toluene $3.20{\times}10-8cm2/min$, and tetrachloruethylene $4.94{\times}10^{-8}cm^2/min$.

  • PDF

Flavor identification and analysis of fermented soybean pastes

  • Da-Na Lee;Kyung-Min Lee;Sung-Eun Lee;Tae-Oh Kim
    • 한국식품저장유통학회지
    • /
    • 제31권3호
    • /
    • pp.374-384
    • /
    • 2024
  • Soybean paste is a staple food used to make doenjang (DE), cheonggukjang (CGJ), and miso (MI). In this study, solid-phase microextraction followed by gas chromatography-mass spectrometry was used to identify volatile components in DE, CGJ, and MI, and principal component analysis (PCA) was performed to determine their correlation between soybean pastes. Esters and hydrocarbons accounted for more than 55% of the total volatile components. PCA showed that esters were highly correlated with DE; pyrazines were correlated with CGJ; and alcohols were highly correlated with MI. Because DE, CGJ, and MI are made of the same material, their overall volatile content tended to be similar. However, the main volatile components and fragrances were different. These findings will be used as basic research data to promote quality improvement of soybean-based fermented foods in Korea and Japan.

산업단지 대기질 관리, HAP인가 VOC인가\ulcorner (Air Quality Management in the Industrial Estate, HAP or VOC\ulcorner)

  • 김영성
    • 한국대기환경학회지
    • /
    • 제15권4호
    • /
    • pp.513-517
    • /
    • 1999
  • Problems of secondary pollution and hazardous pollutants have rapidly come to the front in our society during the past few years. More attention should be paid to monitoring and assessment in order to identify the nature of complicated problems, but our air-quality policy is hurriedly seeking for management strategies. A typical example is air quality management in the industrial estates such as those located in Yochon and Ulsan. Yochon Industrial Estate was designated as a special air-quality management area of volatile organic compounds(VOCs) in 1996. And VOCs in the air of Ulsan Industrial Estate has been specially controlled since 1997. In this paper, however, it is suggested that hazardous air pollutants(HAPs) rather than VOCs should have been managed in the industrial estates. History of studies on organic compounds in the air of the industrial estates is reviewed. A stepwise approach for air quality management in the industrial estates is recommended.

  • PDF

GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis ) and Its Seed

  • Hong, Eunyoung;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제18권3호
    • /
    • pp.218-221
    • /
    • 2013
  • Korean cabbage, a member of the Brassicaceae family which also includes cauliflower, mustard, radish, and turnip plants, is a crucial leafy vegetable crop. Korean cabbage is harvested after completion of the leaf heading process and is often prepared for use in "baechu kimchi", a traditional Korean food. Many of the components in Korean cabbage are essential for proper human nutrition; these components can be divided into two groups: primary metabolites, which include carbohydrates, amino acids, fatty acids, and organic acids, and secondary metabolites such as flavonoids, carotenoids, sterols, phenolic acids, alkaloids, and glucosinolates (GSLs). Using gas chromatography-mass spectrometry, this study examined the variety of volatile compounds (including isothiocyanates) contained in Korean cabbage and its seed, which resulted in the identification of 16 and 12 volatile compounds, respectively. The primary volatile compound found in the cabbage was ethyl linoleolate (~23%), while 4,5-epithiovaleronitrile (~46%) was the primary volatile component in the seed.

Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors

  • Hyungsup Kim;Minwoo Kim;Yongwoo Jang
    • Biomolecules & Therapeutics
    • /
    • 제32권2호
    • /
    • pp.192-204
    • /
    • 2024
  • Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca2+-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.