• Title/Summary/Keyword: Void effect

Search Result 436, Processing Time 0.027 seconds

A Study on the partial Discharge Characteristics according to the Distribution pattern of voids within LDPE (보이드 분포 형태에 따른 LDPE의 부분 방전 특성 연구)

  • Shin, Doo-Seong;Jeon, Seung-Ik;Lee, Jun-Ho;Yun, Do-Hong;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1081-1084
    • /
    • 1995
  • Internal voids located within an insulation will arise partial discharge that causes local breakdown and even the entire insulation breakdown. For HV apparatuses, it is usual case that several voids are formed within non-uniform electric field condition rather than single void within uniform field, which can be solved analitically. The purpose of this work is to study partial discharge and breakdown characteristics of an insulation according to the distribution pattern of two disc-type voids that are located within non-uniform field. The results from numerical field analysis and experiments show that the electric field within the voids decreases as they are arranged more serially, which accordingly results in the increase of partial discharge inception field(PDIF) much higher than that of single void model. With parallel arranged voids, PDIF is almost the same as that of single void model. On the other hand, AC breakdown strength decreases as voids are arranged more serially, which is a natural result considering the reduction of effective insulation thickness. For parallel voids, this effect cannot he noticed where as they show different pattern compared with single void and serial void models in $\Phi$-Q-N analysis. Considering these results may leads us to the conclusion that, in the evaluation of insulating products through PD test, it is not sufficient to determine only PDIV or existence of PD at predetermined voltage level. We could evaluate more accurately by considering all the available data such as PDIV, PD magnitude, PD occurring phase, number of PD pulses, and etc.

  • PDF

Experimental Study on Correlation Analysis of Air-void, Air-spacing factor and Long-term Durability for Roller-compacted Concrete pavement (롤러 전압 콘크리트 포장의 공기량 및 기포간격계수와 장기 내구성의 상관관계 분석을 위한 실험적 연구)

  • Lee, Jun Hee;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS : The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to $300{\mu}m$ (close to $250{\mu}m$) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS : The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.

Analysis of CD stud welding process and defects (CD 스터드 용접공정의 해석 및 결함 분석)

  • O, Hyeon-Seok;Yu, Jung-Don
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.55-57
    • /
    • 2005
  • In this study, modeling of the CD stud welding system was conducted considering mechanical and electrical components. The electrical components such as arc resistance, cable resistance, capacitance, internal resistance and cable inductance were found to affect the output waveform significantly. The calculated results showed food agreements with the experiment results within 20% error. The main defect of CD stud welding with 1010 steel stud and SS400 steel plate was the void trapped between stud and base metal. The effect of the spring force and stud tip size on void formation was investigated.

  • PDF

A Study on Manufacturing Method of Standard Void Specimens for Non-destructive Testing in RFI Process and Effect of Void on Mechanical Properties (RFI 공정 부품 비파괴검사용 표준 기공률 시편 제조 방법 및 기공률에 따른 기계적 물성 영향에 대한 연구)

  • Han, Seong-Hyeon;Lee, Jung-Wan;Kim, Jung-Soo;Kim, Young-Min;Kim, Wee-Dae;Um, Moon-Kwang
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • The RFI process is an OoA process that fiber mats and resin films are laminated and cured in a vacuum bag. In case that resin film is insufficient to fill empty space in fibers, it makes void defect in composites and this void decrease mechanical properties of the composites. For this reason, non-destructive testing is usually used to evaluate void of manufactured composites. So, in this study, a manufacturing method of standard void specimens, which are able to be used as references in non-destructive testing, was proposed by controlling resin film thickness in the RFI process. Also, a fiber compaction test was proposed as a method to set the resin film thicknesses depending on target voids of manufacturing panels. The target void panels of 0%, 2%, and 4% were made by the proposed methods, and signal attenuation depending on void was measured by non-destructive testing and image analysis. In addition, voids of specimens for tensile, in-plane, short beam and compressive tests were estimated by signal attenuation, and mechanical properties were evaluated depending on the voids.

Reliability Assessment and Prediction of Solder Joints in High Temperature Heaters (고온히터 솔더접합부의 신뢰성 평가 및 예측)

  • Park, Eunju;Kwon, Daeil;Sa, Yoonki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.23-27
    • /
    • 2017
  • This paper proposes an approach to predict the reliability of high temperature heaters by identifying their primary failure modes and mechanisms in the field. Test specimens were designed to have the equivalent stress conditions with the high temperature heaters in the field in order to examine the effect of stress conditions on the solder joint failures. There failures often result from cracking due to intermetallic compound (IMC) or void formation within a solder joint. Aging tests have been performed by exposing the test specimens to a temperature of $170^{\circ}C$ in order to reproduce solder joint failures in the field. During the test, changes in IMC formation were investigated by scanning electron microscopy (SEM) on the cross-sections of the test specimens, while changes in void formation were monitored both by resistance spectroscopy and by micro-computed tomography (microCT), alternately. The test results demonstrated the void volume within the solder increased as the time at the high temperature increased. Also, the phase shift of high frequency resistance was found to have high correlation with the void volume. These results implied the failure of high temperature heaters can be non-destructively predicted based on the correlation.

Process Design for Manufacturing 1.5wt%C Ultrahigh Carbon Workroll: Void Closure Behavior and Bonding Strength (1.5wt%C 초고탄소 워크롤 제조를 위한 단조 공정 설계: 기공압착 및 접합강도 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Experiments and numerical simulations of the incremental upsetting test were carried out to investigate void closure behavior and mechanical characteristic of a 1.5wt%C ultra-high carbon steel. The experimental results showed that the voids become quickly smaller as the reduction ratio increases. The simulation results confirmed this behavior and indicated that the voids were completely closed at a reduction ratio of about 40~45% during incremental upsetting. After the completion of the incremental upsetting tests, the process of diffusion bonding was employed to heal the closed voids in the deformed specimens. To check the appropriate temperature for diffusion bonding, deformed specimens were kept at 800, 900, 1000 and $1100^{\circ}C$ for an hour. In order to investigate the effect of holding time for diffusion bonding at $1100^{\circ}C$, specimens were kept at 10, 20, 30, 40, 50 and 60minutes in the furnace. A distinction between closed and healed voids was clearly established using microstructural observations. In addition, subsequent tensile tests demonstrated that complete healing of a closed void was achieved for diffusion bonding temperatures in the range $900{\sim}1100^{\circ}C$ with a holding time larger than 1 hour.

A Study on the Surface Air-Void Reduction of High Performance Concrete (고성능 콘크리트의 표면기포 저감에 관한 연구)

  • Park, Sang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • In this study, reduction methods of surface air void were examined for high performance concrete having high viscosity. The effects of assumed influencing factors such as form types, form-coating materials, tamping equipments and methods were examined based on the tests on mock-up specimens made of high performance concrete. The test results can be summarized as follows: As for form types, the most favorable results were obtained when coated plywood form was used with panel-shape tamping equipments at the contact region with concrete, the second and the third being the water/air-permeable sheets and steel with coated plywood, respectively. As for tamping equipments, a vibrator with 6.5cm diameter was most effective. Finally, the shorter the tamping intervals, the better the reduction effect of surface air void. As a conclusion, an improved method was proposed to reduce surface air void and it was verified with the test result that only four air voids as large as $5{\sim}10mm$ are found in the are of $1m^2$.

NEAL-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW (과냉 비등유동에 대한 CFD 모의 계산에서의 벽 인접격자 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.320-325
    • /
    • 2010
  • A multiphase CFD analysis is performed to investigate the effect of near-wall grid for simulating a subcooled boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and vapor(steam) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit ($y_{w}^{+}$) was examined from 64 to 172 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y_{w}^{+}$ > 100.

  • PDF

Neutronics modeling of bubbles in bubbly flow regime in boiling water reactors

  • Turkmen, Mehmet;Tiftikci, Ali
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1241-1250
    • /
    • 2019
  • This study mainly focused on the neutronics modeling of bubbles in bubbly flow in boiling water reactors. The bubble, ring and homogenous models were used for radial void fraction distribution. Effect of the bubble and ring models on the infinite multiplication factor and two-group flux distribution was investigated by comparing with the homogenous model. Square pitch unit cell geometry was used in the calculations. In the bubble model, spherical and non-spherical bubbles at random positions, sizes and shapes were produced by Monte Carlo method. The results show that there are significant differences among the proposed models from the viewpoint of physical interaction mechanism. For the fully-developed bubbly flow, $k_{inf}$ is overestimated in the ring model by about $720{\pm}6pcm$ with respect to homogeneous model whereas underestimated in the bubble model by about $-65{\pm}9pcm$ with a standard deviation of 15 pcm. In addition, the ring model shows that the coolant must be separated into regions to properly represent the radial void distribution. Deviations in flux distributions principally occur in certain regions, such as corners. As a result, the bubble model in modeling the void fraction can be used in nuclear engineering calculations.

Stratified Steady and Unsteady Two-Phase Flows Between Two Parallel Plates

  • Sim Woo-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.125-132
    • /
    • 2006
  • To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated.