• Title/Summary/Keyword: Void deformation

Search Result 91, Processing Time 0.02 seconds

FE-Analysis on void closure behavior during hot open die forging process (주단조품의 기공형태에 따른 기공압착거동에 관한 연구)

  • Lee, Y.S.;Kwon, Y.N.;Lee, J.H.;Lee, S.W.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • The studies for internal void closure have been conducted experimentally and numerically for open die forging. The FEM analysis is performed to investigate the deformation behavior of some internal voids in cast ingots during two upsetting stages. The calculated results of void closure behavior are compared with the measured results before and after upsetting. The shapes and sizes of each internal void are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the types of void. Closed voids could be compressed and eliminated after forging when the applied deformation amounts were larger than the critical effective strains. On the other hand, open voids could not be compressed and removed.

  • PDF

Comprehensive Analysis on Wrinkled Patterns Generated by Inflation and Contraction of Spherical Voids

  • Lim, Min-Cheol;Park, Jaeyoon;Jung, Ji-Hoon;Kim, Bongsoo;Kim, Young-Rok;Jeong, Unyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.651-658
    • /
    • 2018
  • We comprehensively investigated the wrinkles of a stiff layer covering a spherical void embedded in a rubber matrix after the void experienced inflation or contraction. We developed an easy experimental way to realize the inflation and contraction of the voids. The inflation took place in a void right beneath the surface of the matrix and the contraction happened in a void at the bottom of the rubber matrix. In the inflation, the wrinkle at the center of the deformation was random, and the pattern propagated into rabyrinthine, herringbone, and then oriented parallel lines as the position was away from the center of the inflation to the edge. The cracks were concentric, which were perpendicular to the parallel wrinkled pattern. In the contraction, the wrinkle was simply concentric around the surface of the void without any crack. The cracks were found only near the center of the deformation. The strain distribution in the stiff layer after the inflation and contraction was theoretically analyzed with simulations that were in excellent agreement with the experimental results.

The Prediction of Void Ratio in Unsaturated Soils (불포화토에서 공극비의 추정)

  • Lee Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.51-57
    • /
    • 2006
  • This study was carried out to investigate the soil water characteristic curve and prediction of void ratio with net stress and matric suction using the linear elastic and volumetric deformation analysis method on unsaturated silty. The unsaturated soil tests were conducted using a modified oedometer cell and specimens were prepared at water content 2 times of liquid limit and required void ratio. The axis translation technique was used to create the desired matric suctions in the samples. It is shown that soil water characteristic curve and volumetric water content were affected significantly by preconsolidation pressure. As a matric suction increases, the reduction ratio of void ratio was shown to considerably small. Also, the predicted and measured void ratio for unsaturated soils using the linear elastic and volumetric deformation analysis showed good agreement as net stress and matric suction increases.

Evaluation methods for Void Closing Behavior in Large Ingot (기공닫힘부 폐쇄정도 결정을 위한 평가방법 연구)

  • Choi, I.J.;Choi, H.J.;Yoon, D.J.;Lee, G.A.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.339-343
    • /
    • 2011
  • This paper presents methods for analyzing the extent of cylindrical-shaped void closure. In addition, a quantitative relationship between change in void fraction and height reduction ratio of a compressed specimen is proposed. The height reduction ratio, number of deformation steps and billet rotation were chosen as key process parameters influencing the void closing behavior, namely, the changes in void shape and size during hot open die forging of a large ingot. The extent of void closure was analyzed from microscopic observations and estimated from tensile test results. The tensile strengths of specimens with closed voids and those without were compared for various reduction ratios in height. The results confirmed that void closure occurs at reduction ratios greater than 30 %. The void closing behavior could be expressed as a hyperbolic tangent function of reduction ratio in height, number of paths, and billet rotation. The knowledge presented in this paper could be helpful for optimizing deformation paths in open die forging processes.

Small Angle X-ray Scattering Studies on Deformation Behavior of Rubber Toughened Polycarbonate (소각 X-선 산란을 이용한 고무입자로 강인화된 폴리카보네이트의 변형에 관한 연구)

  • Cho, Kilwon;Choi, Jaeseung;Yang, Jaeho;Kang, Byoung Il
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.19-26
    • /
    • 2002
  • In order to study the toughening mechanism of rubber modified polycarbonate, the sequence of development of micro-voids was investigated by real-time small angle X-ray scattering with Synchrotron radiation (SR-SAXS). The used test method was wedge test. The scattering intensity increases with increasing penetration depth of wedge, i.e. applied strain. The increase is due to the micro-void formation during deformation. This micro-void was uniformly developed in matrix and was different from large-void due to internal cavitation of rubber particle and/or debonding between rubber particle and polycarbonate matrix. The micro-void was developed at the critical strain and the radius of micro-void is around $600{\AA}$. Above the critical strain the size of micro-void remains almost constant with increasing applied strain. However, the population of micro-void increased with applied strain.

  • PDF

Analysis of Deformation Localization of Void Material using Nolocal Constitutive Relation (I) (비국소형 구성식을 이용한 보이드 재료의 변형 국소화 거동의 해석(I))

  • 김영석;최홍석;임성언
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • Most studies of failure analysis in ductile metals have been based on the classical plasticity theory using the local constitutive relations. These frequently yields a physically unrealistic solution, in which a numerical prediction of the onset of a deformation localization shows an inherent mesh-size sensitivity. A one way to remedy the spurious mesh sensitivity resulted in the unreasonable results is to incorporate the non-local plasticity into the simulation model, which introduce an internal (material) length-scale parameter into the classical constitutive relations. In this paper, a non-local version of the modified Gurson constitutive relation has been introduced into the finite element formulation of the simulation for plane strain compression of the visco elastic-plastic void material. By introducing the non-local constitutive relations we could successfully removed the inherent mesh-size sensitivity for the prediction of the deformation localization. The effects of non-local constitutive relation are discussed in terms of the load-stroke curve and the strain distributions accross the shear band.

  • PDF

Forming Characteristics of Laser Welded Tailored Blanks I : Tensile Deformation Characteristics. (레이저 용접 테일러드 블랭크의 기본 성형특성 I : 인장변형 특성)

  • Park, Gi-Cheol;Han, Su-Sik;Kim, Gwang-Seon;Gwon, O-Jun
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • In order to analyze the tensile deformation characteristics of laser welded tailored blanks. laser welded blanks of different thikness and strength combinations were prepared and tensile tests were done. The tensile elongation along the direction perpendicular to weld line of laser welded blanks was reduced as increasing the deformation restraining force (strength X thicknes) ratio between two welded sheets and fracture occurred at weaker side of base sheets if void ration of welded sheets and fracture occurred at weaker side of base sheets if void ratio of weld section was less than 45% The tensile elongation along weld line reached above 90% of the elongation of base material if welding was done perfectly. Total elongation along the direction perpendicular to weld line was able to be predicted by force equilibrium and power law behavior of base sheets and it was related with the deformation of stronger sheet and formability of weaker side.

  • PDF

Prediction of Void Crushing Behavior in Upset & Bloom Forging of Large Ingot (대형인곳의 업셋-블룸단조에서의 기공 압착 거동 예측)

  • Kwon I.K.;Kim K.H.;Youn Y.C.;Song M.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.325-328
    • /
    • 2004
  • This paper deals with void crushing behavior by ingot forging process which consists of sequential operations of upset forging and bloom forging. The predicted results of void crushing behavior by the simplified global-local method using F.E. analysis showed that the inherent void at the top region of the ingots remains incompletely crushed even after several forging operations. From the results of the hot upset forging test using the billets with drilled voids, it was found that the bonding efficiency of the void after forging process increases with an increase in deformation, and a decrease of initial diameter of voids.

  • PDF

Development of the Permanent Deformation Prediction Model of 19mm Dense Grade Asphalt Mixtures (19mm 밀입도 아스팔트 혼합물의 소성변형 예측 모델 개발)

  • Park, Hee-Mun;Choi, Ji-Young;Park, Seong-Wan
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • Permanent Deformation is one of the most important load-related pavement distresses in asphalt pavements. The Korean Pavement Design Guide currently being developed adopted the mechanistic-empirical approach and needed the pavement distress prediction models. This study intends to develop the model for prediction of permanent deformation in the asphalt layer and estimate the pavement performance. The objectives of this paper are to figure out the factors affecting the permanent deformation and then develop the permanent deformation prediction model for asphalt mixtures. The repeated triaxial load test was Performed on the 19mm dense graded asphalt mixture with variation of temperature and air void. Results from the laboratory tests showed that temperature and air void in asphalt mixtures have significantly influenced on the factors in prediction model. The permanent deformation prediction model for 19m dense grade asphalt mixtures has been developed using the multiple regression approach and validated the proposed permanent deformation prediction model.

  • PDF

Numerical analysis of Consolidation Behavior under Various Drainage Conditions (배수조건에 따른 압밀 거동의 수치적 분석)

  • Oh, Sang-Ho;Cho, Wan-Jei;Yune, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF