• 제목/요약/키워드: Vitrified-bond Diamond Wheel

검색결과 11건 처리시간 0.029초

초경합금 연삭용 비트리파이드 다이아몬드숫돌의 개발 (Development of Vitrified Diamond Wheel for Grinding Tungsten Carbide)

  • 이재우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.185-188
    • /
    • 2002
  • An abrasive vitreous bonded solid mass having a vitrified abrasive structure comprising diamond grains which are held by an in inorganic bonding agent, the vitrified diamond wheel is impregnated with a composition which comprises a thermosetting synthetic resin and a surfactant. The vitrified diamond wheel is manufactured by preparing the composition including the resin and the surfactant, impregnating the abrasive structure with the composition, and curing the composition. The diamond wheel newly developed showed excellent performance in grinding carbide.

  • PDF

세라믹 연삭에서 결합제에 따른 다이아몬드 휠의 마멸 특성 (Wear Characteristics of Diamond Wheel according to bond in Ceramic Grinding)

  • 공재향;유봉환;소의열;이근상;유은이;임홍섭
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.75-81
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel during grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous finding of ceramics, cutting edge ratio of resinoid bond wheel decreased. For the case of vitrified bond wheel, cutting edge ratio did not change.

세라믹 연삭에서 다이아몬드 숫돌 마멸에 관한 연구 (A Study on the Diamond Wheel Wear in Ceramic Grinding)

  • 공재향;유봉환;소의열;이근상;유은이
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.344-348
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness after using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous grinding of ceramics, cutting edge ratio of resinoid bond wheel decreases. For the case of vitrified bond wheel, cutting edge ratio does not change.

  • PDF

CBN휠에 의한 5종 재료의 연삭 특성 비교 (The Grinding Characteristics of 5 kind metals for CBN Wheel)

  • 원종호;김건희;안병민;박순섭;이진오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.925-929
    • /
    • 2001
  • Ultra-abrasives such as diamond and CBN have used to maintain accuracy and form deviation for superalloy etc. This study contains the dry cylindrical grinding of metals with Vitrified-bond CBN wheel and Resinoid-bond CBN wheel. For various conditions of grinding speed, workpiece speed, grinding depth and feed speed of table, the grinding resistance, the surface roughness, and the material removal are measured and discussed.

  • PDF

CBN 휠의 연삭특성에 관한 비교연구 (A study Grinding Characteristic of CBN Wheel)

  • 안병민;원종호;김건희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.315-320
    • /
    • 2001
  • Ultra-abrasives such as diamond and CBN have used to maintain accuracy and form deviation for superalloy etc. This study contains the dry cylindrical grinding of metals with Vitrified-bond CBN wheel and Resinoid-bond CBN wheel. For various condition of grinding speed, workpiece speed, grinding depth and feed speed of table, the grinding resistance, the surface roughness, and material removal are measured and discussed.

  • PDF

비트리파이드 본드 CBN 휠의 연삭특성 (Grinding Characteristics of Vitrified-bond CBN Wheel)

  • 원종호;김건희;박상진;안병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.787-792
    • /
    • 2000
  • Ultra-abrasives such as diamond and CBN have used to maintain accuracy and form deviation for superalloy etc. This study contains the dry cylindrical grinding of metals with Vitrified-bond CBN wheel. For various conditions of grinding speed, workpiece speed, grinding depth and feed speed of table, the grinding resistance, the surface roughness, and the material removal are measured and discussed. The results are as follows.

  • PDF

다이아몬드 휠에 의한 세라믹 연삭의 연삭력 평가 (Evaluation on Grinding Force of Ceramic Grinding by the Diamond Wheel)

  • 문홍현;김성청;공재향;박병규;소의열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.43-47
    • /
    • 2002
  • In this study, through the experimental results of grinding ratio, grinding force and surface roughness with the obtained wear amount of diamond wheel and ceramic material during the grinding process, the following conclusions could be found. In the case of $Si_3N_4$, the wear of diamond wheel is large while the grinding force is stable and the range of change in surface roughness is small. for the case of $AL_2O_3$ and $ZrO_3$, while the wear of diamond wheel is getting smaller, the grinding force is increasing but the value of surface roughness is decreasing. For grinding with the vitrified bond wheel, it seems that the self-sharpening can be found for $Si_3N_4$ and the glazing effect of the cutting edge for $AL_2O_3$ and $ZrO_3$.

  • PDF

세라믹 연삭에서 다이아몬드 휠의 연삭 특성 및 마멸 거동 (Grinding Characteristics and Wear Behavior of Diamond Wheel in Ceramic Grinding)

  • 박병규;문홍현;김성청
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.8-14
    • /
    • 2003
  • The characteristics of grinding and wear behavior of diamond wheel for grinding ceramic materials was investigated in this study. In case of $Si_3N_4$, the wear of wheel was large, the finding force was relatively stable and the fluctuation of surface roughness n small. On the other hand in case of $Al_2O_3$ and $ZrO_2$, the wear of wheel and surface roughness were decreasing, the grinding force was increasing. During grinding with vitrified bond wheel, $Si_3N_4$ shows renewal of cutting edge while $Al_2O_3$ and $ZrO_2$ show glazing phenomenon of cutting grains. We have found that it possible to observe the behavior of grinding wheel by grinding ratio, grinding resistance, surface roughness and cutting edge ratio. Through the grinding experiments, it was found that grinding life of diamond wheel is 20 times for $Si_3N_4$, and 40 times fir $Al_2O_3$ and $ZrO_2$.