• Title/Summary/Keyword: Viterbi Decoding

Search Result 128, Processing Time 0.026 seconds

A Novel Parallel Viterbi Decoding Scheme for NoC-Based Software-Defined Radio System

  • Wang, Jian;Li, Yubai;Li, Huan
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.767-774
    • /
    • 2013
  • In this paper, a novel parallel Viterbi decoding scheme is proposed to decrease the decoding latency and power consumption for the software-defined radio (SDR) system. It implements a divide-and-conquer approach by first dividing a block into a series of subblocks, then performing independent Viterbi decoding for each subsequence, and finally merging the surviving subpaths into the final path. Moreover, a network-on-chip-based SDR platform is used to evaluate the performance of the proposed parallel Viterbi decoding scheme. The experiment results show that our scheme can speed up the Viterbi decoding process without increasing the BER, and it performs better than the current state-of-the-art methods.

The performance analysis and optimal conditions for Viterbi decoding over the Gaussian channel (가우스 채널 상에서의 비터비 디코딩에 대한 성능 분석 및 최적 조건 고찰)

  • Won, Dae-Ho;Jung, Hui-Sok;Yang, Yeon-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.357-359
    • /
    • 2010
  • The Viterbi Decoding is one of the most researched areas of the convolutional decoding methods. In this paper, we use various parameters for the substantial Viterbi decoding and discuss some viterbi decoding methods. And, the viterbi algorithms of the methods, we discuss 'Hard Decision' and 'Soft Decision'. So, we compare differences of two methods about decoding methods, performance. Because of having various parameters and decision methods, we discuss the values of various parameter and decision methods in the Gaussian channel about the viterbi decoding methods.

  • PDF

Viterbi-based Decoding Algorithm for DBO-CSS

  • Yoon, Sang-Hun;Jung, Jun-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.657-660
    • /
    • 2011
  • Differential detection algorithm for DBO-CSS based on maximum signal energy detection (MSED) using viterbi algorithm is proposed. In order to mitigate SNR degradation caused by differential decoding, a modified viterbi algorithm with so called correlation metric (CM) in every state is proposed. It is shown that the performance gain of the proposed algorithm when compared with that of the conventional differential detection with the block decoding algorithm is about 2.5dB at BER = $10^{-5}$.

Hardware Design and Implementation of Joint Viterbi Detection and Decoding Algorithm for Bluetooth Low Energy Systems (블루투스 저전력 시스템을 위한 저복잡도 결합 비터비 검출 및 복호 알고리즘의 하드웨어 설계 및 구현)

  • Park, Chul-hyun;Jung, Yongchul;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.838-844
    • /
    • 2020
  • In this paper, we propose an efficient Viterbi processor using Joint Viterbi detection and decoding (JVDD) algorithm for a for bluetooth low energy (BLE) system. Since the convolutional coded Gaussian minimum-shift keying (GMSK) signal is specified in the BLE 5.0 standard, two Viterbi processors are needed for detection and decoding. However, the proposed JVDD scheme uses only one Viterbi processor by modifying the branch metric with inter-symbol interference information from GMSK modulation; therefore, the hardware complexity can be significantly reduced without performance degradation. Low-latency and low-complexity hardware architecture for the proposed JVDD algorithm was proposed, which makes Viterbi decoding completed within one clock cycle. Viterbi Processor RTL synthesis results on a GF55nm process show that the gate count is 12K and the memory unit and the initial latency is reduced by 33% compared to the modified state exchange (MSE).

Design of R=1/2, K=7 Type High Speed Viterbi Decoder with Circularly Connected 2-D Analog Parallel Processing Cell Array (아날로그 2차원 셀의 순환형 배열을 이용한 R=l/2. K=7형 고속 비터비 디코더 설계)

  • 손홍락;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.650-656
    • /
    • 2003
  • A high speed Viterbi decoder with a circularly connected 2-dimensional analog processing ceil array Is proposed. The proposed Viterbi .decoder has a 2-dimensional parallel processing structure in which an analog processing cell is placed at each node of a trellis diagram, the output column of the analog processing cells is connected to the decoding column, and thus, the output(last) column becomes a column right before the decoding(first) column. The reference input signal given at a decoding column is propagated to the whole network while Its magnitude is reduced by the amount of a error metric on each branch. The circuit-based decoding is done by adding a trigger signals of same magnitudes to disconnect the path corresponding to logic 0 (or 1) and by observing its effect at an output column (the former column of the decoding column). The proposed Viterbi decoder has advantages in that it is operated with better performance of error correction, has a shorter latency and requires no path memories. The performance of error correction with the proposed Viterbi decoder is tested via the software simulation.

New DSP Instructions and their Hardware Architecture for the Viterbi Decoding Algorithm (비터비 복호 알고리즘 처리를 위한 DSP 명령어 및 하드웨어 회로)

  • Lee, Jae-Sung;Sunwoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.53-61
    • /
    • 2002
  • This paper proposes new DSP instructions and their architecture which efficiently implements the Viterbi decoding algorithm. The proposed architecture, supporting typical signal processing functions as in existing DSP chips, consists of an array of operational units and data path structures adequate to the Viterbi algorithm. While existing DSP chips perform Viterbi decoding at the rate of about several dozen kbps, the proposed architecutre can give the rate of 6.25 Mbps on 100 MHz DSP chips, which is nearly the same performance as that of custom-designed Viterbi processors. Therefore, the architecture can meet the standard of IMT-2000 having the 2Mbps data rate.

Viterbi-based Decoding Algorithm for DBO-CSS

  • Yoon, Sang-Hun;Jung, Jun-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.646-649
    • /
    • 2011
  • Differential detection algorithm for DBO-CSS based on maximum signal energy detection (MSED) using viterbi algorithm is proposed. In order to mitigate SNR degradation caused by differential decoding, a modified viterbi algorithm with so called correlation metric (CM) in every state is proposed. It is shown that the performance gain of the proposed algorithm when compared with that of the conventional differential detection with the block decoding algorithm is about 2.5dB at BER = $10^{-5}$.

  • PDF

Implementation of Channel Coding System using Viterbi Decoder of Pipeline-based Multi-Window (파이프라인 기반 다중윈도방식의 비터비 디코더를 이용한 채널 코딩 시스템의 구현)

  • Seo Young-Ho;Kim Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.587-594
    • /
    • 2005
  • In the paper, after we propose a viterbi decoder which has multiple buffering and parallel processing decoding scheme through expanding time-divided imput signal, and map a FPGA, we implement a channel coding system together with PC-based software. Continuous input signal is buffered as order of decoding length and is parallel decoded using a high speed cell for viterbi decoding. Output data rate increases linearly with the cell formed the viterbi decoder, and flexible operation can be satisfied by programming controller and modifying input buffer. The tell for viterbi decoder consists of HD block for calculating hamming distance, CM block for calculating value in each state, TB block for trace-back operation, and LIFO. The implemented cell of viterbi decoder used 351 LAB(Logic Arrary Block) and stably operated in maximum 139MHz in APEX20KC EP20K600CB652-7 FPGA of ALTERA. The whole viterbi decoder including viterbi decoding cells, input/output buffers, and a controller occupied the hardware resource of $23\%$ and has the output data rate of 1Gbps.

Analog Parallel Processing-based Viterbi Decoder using Average circuit (Average 출력회로를 이용한 아날로그 병렬처리 기반 비터비 디코더)

  • Kim, Hyung-Jung;Kim, In-Cheol;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.375-377
    • /
    • 2006
  • A Analog parallel processing-based Viterbi decoder which decodes PRML signal of DVD has been designed by CMOS circuit. The analog processing-based Viterbi decoder implements are functions of the conventional digital Viterbi decoder utilizing the analog parallel processing circuit technology. The Analog parallel processing-based Viterbi decoding technology is applied for the PR(1,2,2,1) signal decoding of DVD. The benefits are low power consumption and less silicon consumption. In this paper, the comparison of the Analog parallel processing-based Viterbi Decoder which has a function of the error correction between Max operation and Average operation is discussed.

  • PDF

Performance Analysis of SOVA by Robust Equalization, Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 SOVA 성능분석)

  • Soh, Surng-Ryurl;Lee, Chang-Bum;Kim, Yung-Kwon;Chung, Boo-Young
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.257-265
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics in each decoding step, and uses the information to the next decoding step. Viterbi decoder, which is for a convolutional code, runs continuous mode, while Turbo Code decoder runs by block unit. There are algorithms used in a decoder : which are MAP(maximum a posteriori) algorithm requiring very complicated calculation and SOVA(soft output Viterbi algorithm) using Viterbi algorithm suggested by Hagenauer, and it is known that the decoding performance of MAP is better. The result of this make experimentation shows that the performance of SOVA, which has half complex algorithm compare to MAP, is almost same as the performance of MAP when the SOVA decoding performance is supplemented with Robust equalization techniques.

  • PDF