• Title/Summary/Keyword: Visualization of information

Search Result 2,141, Processing Time 0.036 seconds

Hierarchical Organization of Embryo Data for Supporting Efficient Search (배아 데이터의 효율적 검색을 위한 계층적 구조화 방법)

  • Won, Jung-Im;Oh, Hyun-Kyo;Jang, Min-Hee;Kim, Sang-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.16-27
    • /
    • 2011
  • Embryo is a very early stage of the development of multicellular organism such as animals and plants. It is an important research target for studying ontogeny because the fundamental body system of multicellular organism is determined during an embryo state. Researchers in the developmental biology have a large volume of embryo image databases for studying embryos and they frequently search for an embryo image efficiently from those databases. Thus, it is crucial to organize databases for their efficient search. Hierarchical clustering methods have been widely used for database organization. However, most of previous algorithms tend to produce a highly skewed tree as a result of clustering because they do not simultaneously consider both the size of a cluster and the number of objects within the cluster. The skewed tree requires much time to be traversed in users' search process. In this paper, we propose a method that effectively organizes a large volume of embryo image data in a balanced tree structure. We first represent embryo image data as a similarity-based graph. Next, we identify clusters by performing a graph partitioning algorithm repeatedly. We check constantly the size of a cluster and the number of objects, and partition clusters whose size is too large or whose number of objects is too high, which prevents clusters from growing too large or having too many objects. We show the superiority of the proposed method by extensive experiments. Moreover, we implement the visualization tool to help users quickly and easily navigate the embryo image database.

Geological Factor Analysis for Evaluating the Long-term Safety Performance of Natural Barriers in Deep Geological Repository System of High-level Radioactive Waste (지질학적 심지층 처분지 내 천연방벽의 고준위 방사성 폐기물 장기 처분 안전성 평가를 위한 지질학적 인자 분석)

  • Hyeongmok Lee;Jiho Jeong;Jaesung Park;Subi Lee;Suwan So;Jina Jeong
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.533-545
    • /
    • 2023
  • In this study, an investigation was conducted on the features, events, and processes (FEP) that could impact the long-term safety of the natural barriers constituting high-level radioactive waste geological repositories. The FEP list was developed utilizing the IFEP list 3.0 provided by the Nuclear Energy Agency (NEA) as foundational data, supplemented by geological investigations and research findings from leading countries in this field. A total of 49 FEPs related to the performance of the natural barrier were identified. For each FEP, detailed definitions, classifications, impacts on long-term safety, significance in domestic conditions, and feasibility of quantification were provided. Moreover, based on the compiled FEP list, three scenarios that could affect the long-term safety of the disposal facility were developed. Geological factors affecting the performance of the natural barrier in each scenario were selected and their relationships were visualized. The constructed FEP list and the visualization of interrelated factors in various scenarios are anticipated to provide essential information for selecting and organizing factors that must be considered in the development of mathematical models for quantitatively evaluating the long-term safety of deep geological repositories. In addition, these findings could be effectively utilized in establishing criteria related to the key performance of natural barriers for the confirmation of repository sites.

A BPM Activity-Performer Correspondence Analysis Method (BPM 기반의 업무-수행자 대응분석 기법)

  • Ahn, Hyun;Park, Chungun;Kim, Kwanghoon
    • Journal of Internet Computing and Services
    • /
    • v.14 no.4
    • /
    • pp.63-72
    • /
    • 2013
  • Business Process Intelligence (BPI) is one of the emerging technologies in the knowledge discovery and analysis area. BPI deals with a series of techniques from discovering knowledge to analyzing the discovered knowledge in BPM-supported organizations. By means of the BPI technology, we are able to provide the full functionality of control, monitoring, prediction, and optimization of process-supported organizational knowledge. Particularly, we focus on the focal organizational knowledge, which is so-called the BPM activity-performer affiliation networking knowledge that represents the affiliated relationships between performers and activities in enacting a specific business process model. That is, in this paper we devise a statistical analysis method to be applied to the BPM activity-performer affiliation networking knowledge, and dubbed it the activity-performer correspondence analysis method. The devised method consists of a series of pipelined phases from the generation of a bipartite matrix to the visualization of the analysis result, and through the method we are eventually able to analyze the degree of correspondences between a group of performers and a group of activities involved in a business process model or a package of business process models. Conclusively, we strongly expect the effectiveness and efficiency of the human resources allotments, and the improvement of the correlational degree between business activities and performers, in planning and designing business process models and packages for the BPM-supported organization, through the activity-performer correspondence analysis method.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

A Reduction Method of Over-Segmented Regions at Image Segmentation based on Homogeneity Threshold (동질성 문턱 값 기반 영상분할에서 과분할 영역 축소 방법)

  • Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • In this paper, we propose a novel method to solve the problem of excessive segmentation out of the method of segmenting regions from an image using Homogeneity Threshold($H_T$). The algorithm of the previous image segmentation based on $H_T$ was carried out region growth by using only the center pixel of selected window. Therefore it was caused resulting in excessive segmented regions. However, before carrying region growth, the proposed method first of all finds out whether the selected window is homogeneity or not. Subsequently, if the selected window is homogeneity it carries out region growth using the total pixels of selected window. But if the selected window is not homogeneity, it carries out region growth using only the center pixel of selected window. So, the method can reduce remarkably the number of excessive segmented regions of image segmentation based on $H_T$. In order to show the validity of the proposed method, we carried out multiple experiments to compare the proposed method with previous method in same environment and conditions. As the results, the proposed method can reduce the number of segmented regions above 40% and doesn't make any difference in the quality of visual image when we compare with previous method. Especially, when we compare the image united with regions of descending order by size of segmented regions in experimentation with the previous method, even though the united image has regions more than 1,000, we can't recognize what the image means. However, in the proposed method, even though image is united by segmented regions less than 10, we can recognize what the image is. For these reason, we expect that the proposed method will be utilized in various fields, such as the extraction of objects, the retrieval of informations from the image, research for anatomy, biology, image visualization, and animation and so on.

Low-Power Discrete-Event SoC for 3DTV Active Shutter Glasses (3DTV 엑티브 셔터 안경을 위한 저전력 이산-사건 SoC)

  • Park, Dae-Jin;Kwak, Sung-Ho;Kim, Chang-Min;Kim, Tag-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.18-26
    • /
    • 2011
  • Debates concerning the competitive edge of leading 3DTV technology of the shutter glasses (SG) 3D and the film-type patterned retarder (FPR) are flaring up. Although SG technology enables Full-HD 3D vision, it requires complex systems including the sync transmitter (emitter), the sync processor chip, and the LCD lens in the active shutter glasses. In addition, the transferred sync-signal is easily affected by the external noise and a 3DTV viewer may feel flicker-effect caused by cross-talk of the left and right image. The operating current of the sync processor in the 3DTV active shutter glasses is gradually increasing to compensate the sync reconstruction error. The proposed chip is a low-power hardware sync processor based discrete-event SoC(system on a chip) designed specifically for the 3DTV active shutter glasses. This processor implements the newly designed power-saving techniques targeted for low-power operation in a noisy environment between 3DTV and the active shutter glasses. This design includes a hardware pre-processor based on a universal edge tracer and provides a perfect sync reconstruction based on a floating-point timer to advance the prior commercial 3DTV shutter glasses in terms of their power consumption. These two techniques enable an accurate sync reconstruction in the slow clock frequency of the synchronization timer and reduce the power consumption to less than about a maximum of 20% compared with other major commercial processors. This article describes the system's architecture and the details of the proposed techniques, also identifying the key concepts and functions.

A Design and Development of Big Data Indexing and Search System using Lucene (루씬을 이용한 빅데이터 인덱싱 및 검색시스템의 설계 및 구현)

  • Kim, DongMin;Choi, JinWoo;Woo, ChongWoo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 2014
  • Recently, increased use of the internet resulted in generation of large and diverse types of data due to increased use of social media, expansion of a convergence of among industries, use of the various smart device. We are facing difficulties to manage and analyze the data using previous data processing techniques since the volume of the data is huge, form of the data varies and evolves rapidly. In other words, we need to study a new approach to solve such problems. Many approaches are being studied on this issue, and we are describing an effective design and development to build indexing engine of big data platform. Our goal is to build a system that could effectively manage for huge data set which exceeds previous data processing range, and that could reduce data analysis time. We used large SNMP log data for an experiment, and tried to reduce data analysis time through the fast indexing and searching approach. Also, we expect our approach could help analyzing the user data through visualization of the analyzed data expression.

A novel method for determining dose distribution on panoramic reconstruction computed tomography images from radiotherapy computed tomography

  • Hiroyuki Okamoto;Madoka Sakuramachi;Wakako Yatsuoka;Takao Ueno;Kouji Katsura;Naoya Murakami;Satoshi Nakamura;Kotaro Iijima;Takahito Chiba;Hiroki Nakayama;Yasunori Shuto;Yuki Takano;Yuta Kobayashi;Hironori Kishida;Yuka Urago;Masato Nishitani;Shuka Nishina;Koushin Arai;Hiroshi Igaki
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.129-137
    • /
    • 2024
  • Purpose: Patients with head and neck cancer (HNC) who undergo dental procedures during radiotherapy (RT) face an increased risk of developing osteoradionecrosis (ORN). Accordingly, new tools must be developed to extract critical information regarding the dose delivered to the teeth and mandible. This article proposes a novel approach for visualizing 3-dimensional planned dose distributions on panoramic reconstruction computed tomography (pCT) images. Materials and Methods: Four patients with HNC who underwent volumetric modulated arc therapy were included. One patient experienced ORN and required the extraction of teeth after RT. In the study approach, the dental arch curve (DAC) was defined using an open-source platform. Subsequently, pCT images and dose distributions were generated based on the new coordinate system. All teeth and mandibles were delineated on both the original CT and pCT images. To evaluate the consistency of dose metrics, the Mann-Whitney U test and Student t-test were employed. Results: A total of 61 teeth and 4 mandibles were evaluated. The correlation coefficient between the 2 methods was 0.999, and no statistically significant difference was observed (P>0.05). This method facilitated a straightforward and intuitive understanding of the delivered dose. In 1 patient, ORN corresponded to the region of the root and the gum receiving a high dosage (approximately 70 Gy). Conclusion: The proposed method particularly benefits dentists involved in the management of patients with HNC. It enables the visualization of a 3-dimensional dose distribution in the teeth and mandible on pCT, enhancing the understanding of the dose delivered during RT.

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.