DOI QR코드

DOI QR Code

Geological Factor Analysis for Evaluating the Long-term Safety Performance of Natural Barriers in Deep Geological Repository System of High-level Radioactive Waste

지질학적 심지층 처분지 내 천연방벽의 고준위 방사성 폐기물 장기 처분 안전성 평가를 위한 지질학적 인자 분석

  • Hyeongmok Lee (Department of Geology, Kyungpook National University) ;
  • Jiho Jeong (Department of Geology, Kyungpook National University) ;
  • Jaesung Park (Department of Geology, Kyungpook National University) ;
  • Subi Lee (Department of Geology, Kyungpook National University) ;
  • Suwan So (Department of Geology, Kyungpook National University) ;
  • Jina Jeong (Department of Geology, Kyungpook National University)
  • Received : 2023.09.11
  • Accepted : 2023.10.11
  • Published : 2023.10.30

Abstract

In this study, an investigation was conducted on the features, events, and processes (FEP) that could impact the long-term safety of the natural barriers constituting high-level radioactive waste geological repositories. The FEP list was developed utilizing the IFEP list 3.0 provided by the Nuclear Energy Agency (NEA) as foundational data, supplemented by geological investigations and research findings from leading countries in this field. A total of 49 FEPs related to the performance of the natural barrier were identified. For each FEP, detailed definitions, classifications, impacts on long-term safety, significance in domestic conditions, and feasibility of quantification were provided. Moreover, based on the compiled FEP list, three scenarios that could affect the long-term safety of the disposal facility were developed. Geological factors affecting the performance of the natural barrier in each scenario were selected and their relationships were visualized. The constructed FEP list and the visualization of interrelated factors in various scenarios are anticipated to provide essential information for selecting and organizing factors that must be considered in the development of mathematical models for quantitatively evaluating the long-term safety of deep geological repositories. In addition, these findings could be effectively utilized in establishing criteria related to the key performance of natural barriers for the confirmation of repository sites.

본 연구에서는 고준위 방사성 폐기물 심지층 처분장을 구성하고 있는 천연방벽의 장기안전성에 영향을 줄 수 있는 요소(Feature), 사건(Event), 및 공정(Process)에 대한 조사를 수행하여 FEP 목록을 작성하였다. FEP 목록 작성을 위해 NEA (Nuclear Energy Agency)의 IFEP 목록 3.0이 기초 자료로 활용되었으며, 국외 선도국에서 수행된 지질 조사 및 연구 결과들이 추가적으로 참고되었다. 천연방벽의 성능과 관련하여 총 49개의 FEP 목록이 작성되었으며, 각 인자에 대한 정의, FEP 분류, 장기 안전성에 미치는 영향, 국내 여건에서의 중요도, 정량화 가능 여부 측면에서의 결과가 작성되었다. 또한, 작성된 FEP 목록을 기반으로 처분시설의 장기 안전성에 위협이 될 수 있는 총 3가지의 시나리오를 개발하고 각 시나리오에 있어 천연방벽의 처분 성능에 영향을 주는 지질학적 인자들을 선별 및 관계를 가시화하였다. 본 연구를 통해 구축된 FEP 목록과 시나리오별 인자간 상호관계 가시화 결과는 심지층 처분장의 장기 안전성을 정량 평가하기 위한 수학적 모델 개발에 있어 필수적으로 고려해야 할 인자를 선별 및 구성하는데 중요한 기초 정보를 제공할 수 있을 것으로 판단되며, 방폐물 처분장 부지확정을 위한 천연방벽의 주요 성능과 관련된 기준안을 마련하는 데 유용하게 활용될 수 있을 것으로 보인다.

Keywords

Acknowledgement

이 논문은 정부(원자력안전위원회)의 재원으로 사용후 핵연료관리핵심기술개발사업단 및 원자력안전재단의 지원을 받아 수행된 연구사업이며(No.1075001193), 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020089 80000).

References

  1. ANDRA (2005) Dossier 2005: Argile. Tome: Safety Evaluation of a Geological Repository. INIS-FR--19-1360.
  2. Berkeley National Laboratory (2012) Geologic disposal of high-level radioactive waste: Status, key issues, and trends. United States: N. p., 2012. Web. doi:10.1146/annurev-environ-090611-143314.
  3. Campbell, J.E., Dillon, R.T., Tierney, M.S., Davis, H.T., McGrath, P.E., Pearson, Jr, F.J., Shaw, H.R., Helton, J.C. and Donath, F.A. (1978) Sandia Labs, NUREG/CR-0458; SAND-78-0029
  4. EURAD (2022) Scenario development and FEP analysis, EURAD Domain Insight (1.0). European Joint Programme on Radioactive Waste Management.
  5. GRS (2012) Behandlung des menschlichen Eindringens in ein Endlager fur warmeentwickelnde radioaktive Abfalle, Bericht zum Arbeitspaket 11, Vorlaufige Sicherheitsanalyse fur den Standort Gorleben, Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS).
  6. Hudson, J.A. (1992) Rock Engineering Systems: Theory and Practice. Chichester, U.K.
  7. IAEA (1981) Recommendations on underground disposal of radioactive wastes, Basic Guidance, Safety Series 54.
  8. JAEA and FEPC (2007) Second Progress Report on Research and Development for TRU Waste Disposal in Japan: Repository Design, Safety Assessment and Means of Implementation in the Generic Phase, JAEA-Review 2007-010 and FEPC TRU-Tr2-2007-01.
  9. JAEA (2011) Final Report on the Surface-based Investigation Phase (Phase 1) at the Mizunami Underground Research Laboratory Project. JAEA-Research 2010-067.
  10. Jeon, B., Choi, S., Lee, S. and Jeon, S. (2019) A Conceptual Study for Deep Borehole Disposal of High-Level Radioactive Waste in Korea. Tunnel and Underground Space, v.29(2), p.75-88. https://doi.org/10.7474/TUS.2019.29.2.075.
  11. Ji, S., Lee, J., Koh, Y. and Kim, K. (2016) The state-of-the-art of the geological investigation processes and techniques for deep borehole disposal of high-level radioactive waste. Journal of the Geological Society of Korea, v.52(1), p.95-103. https://doi.org/10.14770/jgsk.2016.52.1.95.
  12. JNC (2000) "H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan. Supporting Report 2. Repository Design and Engineering Technology," JNC TN1410 2000-003, Japan Nuclear Cycle Development Institute Report.
  13. Jung, S. and Ji, S.H. (2020) Review of research on geological evolution relating to long-term safety of a deep geological disposal repository for high-level radioactive wastes. Journal of the Geological Society of Korea, v.56(5), p.641-652. https://www.doi.org/10.14770/jgsk.2020.56.5.641.
  14. KAERI (1998) Several countries' geological disposal concepts and technical criteria. KAERI/AR--499/98.
  15. KAERI (2000) High Level Radwaste Disposal Technology Development/Geological Disposal System Development. KAERI/RR-2013/99.
  16. KAERI (2007) An External Review of FEP & Scenario. KAERI/CM-1286/2007
  17. KAERI (2009) An Approach to PID Method. KAERI/TR-3922/2009.
  18. KAERI (2012) A Study on the Development of the FEP and Scenario for the HLW Disposal in Korea. J. Korean Radioactive Waste Society, v.10(3), p.133-141, Sept. 2012.
  19. Kim, E., Kihm, Y., Cheon, D.S., Hyun, S., Jeon, J., Ko, K. and Choi, S. (2020) Development of Geoscientific Site Assessment Factors for the Deep Geological Disposal of HLW in South Korea. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.57(2), p.215-233. https://doi.org/10.32390/ksmer.2020.57.2.215.
  20. Kim, H.M. and Kwon, S. (2017) Deep Geological Disposal of High-Level Radioactive Wastes and Coupled Thermal-Hydraulic-Mechanical-Chemical Analysis. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.54(4), p.319-327. https://doi.org/10.12972/ksmer.2017.54.4.319.
  21. Lawrence Berkeley National Laboratory (2009) Feature Detection, Characterization and Confirmation Methodology: Final Report. https://escholarship.org/uc/item/7wp4f7jg.
  22. Levasseur, S., Sillen, X., Marschall, P., Wendling, J., Olin, M., Grgic, D. and Svoboda, J. (2022) EURAD GAS and HITEC: mechanistic understanding of gas and heat transport in clay-based materials for radioactive waste geological disposal. EPJ Nuclear Sciences & Technologies, v.8(21). https://doi.org/10.1051/epjn/2022021.
  23. NAGRA (2010) Beurteilung der geologischen Unterlagen fur die provisorischen Sicherheitsanalysen in SGT Etappe 2: Klarung der Notwendigkeit erganzender geologischer Untersuchungen, NAGRA Technischer Bericht (NTB) 10-01.
  24. NEA (2000) Features, Events, and Processes (FEPs) for Geologic Disposal of Radioactive Waste: An International Database, Organisation for Economic Co-operation and Development Nuclear Energy Agency, Paris, France.
  25. NEA (2004) Post-Closure Safety Cases for Deep Geological Disposal of Geological Repositories. NEA-3679. ISBN 92-64-02075-6. (Paris: Organization for Economic Cooperation and Development).
  26. NEA (2014) Updating the NEA International FEP List an Integration Group for the Safety Case (IGSC) Technical Note. Technical Note 1: Identification and Review of Recent Project-specific FEP Lists. NEA-RWM-R--2013-7.
  27. NEA (2019) International Features, Events and Processes (IFEP) List for the Deep Geological Disposal of Radioactive Waste Version 30, NEA-RWM-R--2019-1.
  28. NRI (2010) Stage III: Initial Safety Report Study -C.2 Long-term Safety Evaluation of Deep Geological Repository, Research Centre Rez of the Nuclear Research Institute.
  29. NSSC (2021) General Standards for Deep Disposal Facilities for High-Level Radioactive Waste
  30. NWMO (2011) Postclosure Safety Assessment: Features, Events and Processes, Quintessa Ltd., SENES Consultants Ltd. And Geofirma Engineering Ltd, report for the Nuclear Waste Management Organization NWMO. (DGR-TR-2011-29 R000).
  31. Park, S., Kim, J.S., Kim, G. and Kwon, S. (2019) Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository. Tunnel and Underground Space, v.21(4), p.501-518. https://doi.org/10.9711/KTAJ.2019.21.4.501.
  32. POSIVA (2008) Rock Mass Seismic Imaging Around the ONKALO Tunnerl, Olkiluoto 2007. WR 2008-64, Posiva OY, Olkiluto, Finland.
  33. POSIVA (2010) Interim Summary Report of the Safety Case. POSIVA 2010-02.
  34. POSIVA (2012) Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Synthesis 2012. POSIVA Report 2012-12.
  35. Sandia National Lab (1982) Risk Methodology for Geologic Disposal of Radioactive Waste: Scenario Selection Procedure, NUREG/CR1667, U S NRC, 1982
  36. SKB (2002) Swedish deep repository siting programme: Guide to the documentation of 25 years of geoscientific research (1976-2000). TR-02-18, SKB, Stockholm, Sweden.
  37. SKB (2010) FEP Report for the Safety Assessment SR-Site, Swedish Nuclear Fuel and Waste Management Company (SKB) Report TR-10-45.
  38. SKB (2011) Environmental Impact Statement - Interim storage, encapsulation, and final disposal of spent nuclear fuel.
  39. SKB (2019) FEP report for the safety evaluation SE-SFL. SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT. RT-19-02.
  40. SNL (2008) Features, Events, and Processes for the Total System Performance Assessment Methods. ANL-WIS-MD-000026 REV 00, U.S. Department of Energy Office of Civilian Radioactive Waste Management, Las Vegas, Nevada.
  41. Swift, P.N. (2017) Safety assessment for deep geological disposal of high-level radioactive waste. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste (Second Edition), 451-473. https://doi.org/10.1016/B978-0-08-100642-9.00015-3.
  42. USDoE (2009) Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application for the Waste Isloation Pilot Plant: Appendix SCR-2009 Feature, Event, and Process Screening for PA, DOE/WIP-09-3424.
  43. Vieno T. (1994) Aplication of the RES Methodology for Identifying Features, Events and Processes (FEPs) for Near-Field Analysis of Copper-Steel Canister, YJT 94-21, YJT.
  44. William R. (1988) APPROACH TO UNCERTAINTY IN RISK ANALYSIS. U.S. Environmental Protection Agency, ORNL/TM-10746 DE88 015332