• Title/Summary/Keyword: Visualization and mapping

Search Result 144, Processing Time 0.023 seconds

Generation and Comparison of 3-Dimensional Geospatial Information using Unmanned Aerial Vehicle Photogrammetry Software (무인항공사진측량 소프트웨어를 이용한 3차원 공간정보 생성 및 비교)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.427-439
    • /
    • 2019
  • Purpose: We generated geospatial information of unmanned aerial vehicle based on various SW and analyzed the location accuracy of orthoimage and DSM and texture mapping of 3D mesh. Method: The same unmanned aerial image data is processed using two different SW, and spatial information is generated. Among the generated spatial information, the orthoimage and DSM were compared with the spatial information generation results of the unmanned aerial photogrammetry SW by performing quantitative analysis by calculating RMSE of horizontal position and vertical position error and performing qualitative analysis. Results: There were no significant differences in the positional accuracy of the orthoimage and DSM generated by each SW, and differences in texture mapping in 3D mesh. The creation of the 3D mesh indicated the impact of the Unmanned Aerial Photogrammetry SW. Conclusion: It is shown that there is no effect of SW on the creation of orthoimage and DSM for geospatial analysis based on unmanned aerial vehicle. However, when 3D visualization is performed, texture mapping results are different depending on SW.

Development of noise mapping system to manage the interior room noise of power plants (발전소의 실내 소음관리를 위한 소음 매핑 시스템 개발)

  • Kim, Young-Il;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.92-98
    • /
    • 2021
  • The noise management in the interior of the power plant is difficult because the interior is large and the noise level varies greatly from location to location. Therefore, a noise visualization system capable of analyzing the noise distribution is required in order to effectively manage the interior noise. A noise mapping system was developed that can model the inside of the turbine room and create a noise map by measuring the noise level at selected points. And in order to increase the reliability of the model, the model was modified through a method of comparing the noise map and the actual noise measurement results. Facility abnormalities can be determined through regular analysis of noise maps, and a method of effectively managing the interior noise is presented by comparing and analyzing the frequencies and levels of the current and previous noise at a specific point. By using the mapping system, it is possible to establish noise countermeasures that can improve the working environment, check the machine for abnormalities, and increase the reliability of the facility through preventive maintenance.

3D Online Marshmallow Simulation Game for Target Value Design

  • Kim, Suryeon;Mainardi, Pete;Jeong, H. David;Rybkowski, Zofia;Seo, Jinsil Hwaryoung
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.661-668
    • /
    • 2022
  • Various lean design and construction methods such as target value design, pull planning, value stream mapping have successfully transformed the commercial building construction industry into achieving improved productivity, higher design and construction quality, and meeting the target values of construction projects. Considering the significant advantages of lean, the accelerated dissemination and adoption of lean methods and tools for construction is highly desirable. Currently, the lean design and construction body of knowledge is imparted primarily through publications and conferences. However, one of the most effective ways to impart this soft knowledge is through getting students and trainees involved in hands-on participatory games, which can quickly help them truly understand the concept and apply it to real-world problems. The COVID-19 Pandemic has raised an urgent need of developing virtual games that can be played simultaneously from various locations over the Internet, but these virtual games should be as effective as in-person games. This research develops an online 3D simulation game for Target Value Design that is as effective as in-person games or possibly better in terms of knowledge capture and retention and enjoyable environment and experience. The virtual game is tested on volunteers using feedback from pre-and post- simulation surveys to evaluate its efficacy.

  • PDF

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

A Terrain Rendering Method using Roughness Map and Bias Map (거칠기맵과 편향맵을 이용한 지형 렌더링 가법)

  • Lee, Eun-Seok;Jo, In-Woo;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • In recent researches, several LOD techniques are used for real-time visualization of large sized terrain data. However, during mesh simplification, geometry popping may occur in consecutive frames, because of the geometric error. We propose an efficient method for reducing the geometry popping using roughness map and bias map. A roughness map and a bias map are used to move vertices of the terrain mesh to appropriate position where they minimize the geometry errors. A roughness map and a bias map are represented as a texture suitable for GPU processing. Moving vertices using bias map is processed on the GPU, so the high-speed visualization can be possible.

ANALYSIS BY SYNTHESIS FOR ESTIMATION OF DOSE CALCULATION WITH gMOCREN AND GEANT4 IN MEDICAL IMAGE

  • Lee, Jeong-Ok;Kang, Jeong-Ku;Kim, Jhin-Kee;Kim, Bu-Gil;Jeong, Dong-Hyeok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.146-148
    • /
    • 2012
  • The use of GEANT4 simulation toolkit has increased in the radiation medical field for the design of treatment system and the calibration or validation of treatment plans. Moreover, it is used especially on calculating dose simulation using medical data for radiation therapy. However, using internal visualization tool of GEANT4 detector constructions on expressing dose result has deficiencies because it cannot display isodose line. No one has attempted to use this code to a real patient's data. Therefore, to complement this problem, using the result of gMocren that is a three-dimensional volume-visualizing tool, we tried to display a simulated dose distribution and isodose line on medical image. In addition, we have compared cross-validation on the result of gMocren and GEANT4 simulation with commercial radiation treatment planning system. We have extracted the analyzed data of dose distribution, using real patient's medical image data with a program based on Monte Carlo simulation and visualization tool for radiation isodose mapping.

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

Optimal Scheme of Retinal Image Enhancement using Curvelet Transform and Quantum Genetic Algorithm

  • Wang, Zhixiao;Xu, Xuebin;Yan, Wenyao;Wei, Wei;Li, Junhuai;Zhang, Deyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2702-2719
    • /
    • 2013
  • A new optimal scheme based on curvelet transform is proposed for retinal image enhancement (RIE) using real-coded quantum genetic algorithm. Curvelet transform has better performance in representing edges than classical wavelet transform for its anisotropy and directional decomposition capabilities. For more precise reconstruction and better visualization, curvelet coefficients in corresponding subbands are modified by using a nonlinear enhancement mapping function. An automatic method is presented for selecting optimal parameter settings of the nonlinear mapping function via quantum genetic search strategy. The performance measures used in this paper provide some quantitative comparison among different RIE methods. The proposed method is tested on the DRIVE and STARE retinal databases and compared with some popular image enhancement methods. The experimental results demonstrate that proposed method can provide superior enhanced retinal image in terms of several image quantitative evaluation indexes.

Voxel-wise UV parameterization and view-dependent texture synthesis for immersive rendering of truncated signed distance field scene model

  • Kim, Soowoong;Kang, Jungwon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • In this paper, we introduced a novel voxel-wise UV parameterization and view-dependent texture synthesis for the immersive rendering of a truncated signed distance field (TSDF) scene model. The proposed UV parameterization delegates a precomputed UV map to each voxel using the UV map lookup table and consequently, enabling efficient and high-quality texture mapping without a complex process. By leveraging the convenient UV parameterization, our view-dependent texture synthesis method extracts a set of local texture maps for each voxel from the multiview color images and separates them into a single view-independent diffuse map and a set of weight coefficients for an orthogonal specular map basis. Furthermore, the view-dependent specular maps for an arbitrary view are estimated by combining the specular weights of each source view using the location of the arbitrary and source viewpoints to generate the view-dependent textures for arbitrary views. The experimental results demonstrate that the proposed method effectively synthesizes texture for an arbitrary view, thereby enabling the visualization of view-dependent effects, such as specularity and mirror reflection.

Design of a virtual dismantling facility for research reactor (연구로 가상 해체 시설 설계)

  • Park Hui-Seong;Kim Seong-Gyun;Lee Geun-U;O Won-Jin;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.47-55
    • /
    • 2005
  • A design of a dismantling mock-up system have been established based on the result that analyzed a characteristic of modules which need to design a virtual dismantling facility. A unit program composed of a various module such as a decommissioning database system. 3D dosimetric mapping that represents a distribution of a radionuclide contamination, a evaluation module for a dismantling schedule and cost A research of software architecture was carried out in order to Integrate these components that have been independently operated. The result was established an architecture that consis of a visualization module which could be visualized D&D activities and a simulation module which tan he evaluated a dismantling schedule and decommissioning cost.

  • PDF