• Title/Summary/Keyword: Visualization CFD

Search Result 168, Processing Time 0.027 seconds

On the Visualization of Turbulent Structures Using CFD Technique (CFD 데이터를 이용한 난류구조의 가시화)

  • Na Yang
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.20-24
    • /
    • 2004
  • Recent advances in CFD technique along with a rapid growth of computer resources provide valuable opportunities for developing an accurate way of visualizing turbulent structures. Not only this visualization technique made it possible to check the validity of many of theoretical achievements of the past but also it pushes the current turbulence research to a new paradigm. A brief history of visualization study will be summarized and discussed.

  • PDF

A Study on Atmospheric Environment Visualization by Integrating 3D City Model and CFD Model (3D City모델과 CFD 모델을 통합한 대기환경 시각화 연구)

  • An, Seung-Man;Lee, Ho-Yeong;Sung, Hyo-Hyun;Choi, Yeong-Jin;Woo, Jung-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • The purpose of this study is enhancing CFD model by applying detailed and accurate CFD input data produced from 3D City model and integrating CFD model with 3D city model with OpenGL, 3D city aerodynamic simulation, and visualization tool. CFD_NIMR_SNU model developed by NIMR and SNU and 3D City model produced by NGII were used as input data. Wind flow and pollution diffusion simulator and viewer were developed in this study. Atmospheric environment simulation and visualization tool will save time and cost for urban climate planning and management by enhancing visual communication.

The Metacomputing System for CFD Program Developer (CFD 프로그램 개발자를 위한 메타컴퓨팅 시스템)

  • 강경우
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • Metacomputing system is the environment, which helps the users easily and promptly deal with their jobs. with integration of the distributed computing resources and visualization device. In this research, we have developed a prototype of a special-purpose metacomputing system for simulation in CFD(Computational Fluid Dynamics) field. This system supports the automatic remote compilation, transparent data distribution, the selection of appropriate computing resource, and the realtime visualization. This research can be summarized as following: a study on selecting resource and the integration of component systems. In the research of selecting computing resource, we use the property of CFD algorithm. In the research of realtime visualization. we modify a popular visualizer.

  • PDF

Estimation of Flow Uniformity in Water Tunnel by Using CFD Analysis (전산유동 해석을 이용한 수동의 유동 균질성 평가)

  • Lim, Y.T.;Chang, J.W.;Kim, M.S.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.3
    • /
    • pp.13-24
    • /
    • 2004
  • It is easier to view flow visualization by using a water tunnel rather than a smoke wind tunnel because of low speed at same Reynolds number. Using a water tunnel also produces more definite flow visualization by the use of various color dyes. The flow uniformity in test section is very significant for accuracy of the test because most flow experiments elicit results through the installation of a model in uniform flow. The purpose of small-size desktop-type water tunnel is not to produce quantitative measurements, but rather to give a visualization of the fluid flow phenomenon. However, uniformity in the test section affects the accuracy of the results. Accordingly, this research estimates uniformity in a water tunnel test section by using the commercially available CFD code FLUENT. Results of the CFD analysis show that the flow uniformity of the test section is good.

  • PDF

Mass Conservative Fluid Flow Visualization for CFD Velocity Fields

  • Li, Zhenquan;Mallinson, Gordon D.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1794-1800
    • /
    • 2001
  • Mass conservation is a key issue for accurate streamline and stream surface visualization of flow fields. This paper complements an existing method (Feng et al. 1997) for CFD velocity fields defined at discrete locations in space that uses dual stream functions to generate streamlines and stream surfaces. Conditions for using the method have been examined and its limitations defined. A complete set of dual stream functions for all possible cases of the linear fields on which the method relies are presented. The results in this paper are important for developing new methods for mass conservative streamline visualization from CFD and using the existing method.

  • PDF

BARAM: VIRTUAL WIND-TUNNEL SYSTEM FOR CFD SIMULATION (BARAM: 전산유체 해석을 위한 가상풍동 시스템)

  • Kim, Min Ah;Lee, Joong-Youn;Gu, Gibeom;Her, Young-Ju;Lee, Sehoon;Park, Soo Hyung;Kim, Kyu Hong;Cho, Kumwon
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.28-35
    • /
    • 2015
  • BARAM system that means 'wind' in Korean has been established as a virtual wind tunnel system for aircraft design. Its aim is to provide researchers with easy-to-use, production-level environment for all stages of CFD simulation. To cope with this goal an integrated environment with a set of CFD solvers is developed and coupled with an highly-efficient visualization software. BARAM has three improvements comparing with previous CFD simulation environments. First, it provides a new automatic mesh generation method for structured and unstructured grid. Second, it also provides real-time visualization for massive CFD data set. Third, it includes more high-fidelity CFD solvers than commercial solvers.

Data Structure and Visualization Algorithm in a Post-processing Program (가시화 프로그램에서의 데이터 구조와 가시화 알고리즘)

  • Na J. S.;Kim K. Y.;Kim B. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.82-87
    • /
    • 2003
  • Post-processing programs play an important role in the CFD data visualization and analysis. A variety of post-processing softwares have been developed and are being used in the CFD community. Developing a good quality of post-processing program requires dedication and efforts. In this paper an experience obtained through previous studies and developing post-processing programs are introduced which includes data structure and visualization algorithms.

  • PDF

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

A Study on the Flow characteristics in dividing Rectangular ducts (사각분기 덕트내의 유동특성에 관한 연구)

  • 이행남;박길문;이덕구
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.270-275
    • /
    • 2001
  • The characteristics of flow in dividing regions are precise, therefore their classification is very important not only in industry but also in hydrodynamics. By now, many studies of flow in dividing regions have been peformed, but flow characteristics that use visualization In dividing regions have not been studied. The present study of the PIV and the CFD exhibit average velocity distributions, kinetic energy distributions and total pressure distributions etc of the total flow field due to the development of the accurate visualization optical laser and of optical equipment. Also, PIV is accurate with the flows characteristics of the dividing region as continuous analysis is done using input equipment. The study analyzes velocity vector field, turbulence kinetic energy, turbulence viscosity of dividing regions with flow for visualization of the PIV and the CFD measurement in a dividing rectangular ducts.

  • PDF