• Title/Summary/Keyword: Visual turfgrass quality

Search Result 56, Processing Time 0.027 seconds

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.

Comparison of the Growth Characteristics of Creeping Bentgrass (Agrostis palustris Huds.) Cultivars at Mountain Area (고산지역에서의 크리핑 벤트그래스 품종 생육특성 비교)

  • Jeong, Jun Ki;Lee, Jong Min;Kim, Ki Dong;Lee, Jeong Ho;Joo, Young Kyoo
    • Weed & Turfgrass Science
    • /
    • v.2 no.3
    • /
    • pp.283-291
    • /
    • 2013
  • This experiment was carried out for the selection of suitable cultivars on the green and fairway at the mountain area. The climate data showed that differences of altitude influenced greater than latitude on temperature and rainfall when compared with 3 areas of the central of Gyeong-gi and Yeong-seo, and the mountain area at Yeong-seo. The plot was prepared with the USGA profiles for green and modified California style for fairway at the mountain golf course in Wonju, Korea. The growth characteristics were compared on two different profiles for 3 years of growing seasons after seeding with 5 creeping bentgrass cultivars. 'T-1' and 'CY-2' showed a rapid greenup compare with other cultivars in spring of 2010 with the both green and fairway mowing height. However, 'Penncross' resulted the slowest among cultivars. 'T-1' showed the most prominent visual quality of overall rate and the deepest root length after one year of seeding, while 'Penncross' showed an excellent result of root length and weight during summer season. However, 'Penn A-1' had an imperial result in that season. Comparison of the growth characteristics under green and fairway conditions, 'T-1' and 'CY-2' showed exellent overall results at the mountain area at Yeong-seo area in Korea.

A Potential Biological Weed Control by Golden Apple Snail(Pomacea canaliculata) in Wet Hill Seeded Rice with Iron-coated Seeds (벼 무논점파(철분코팅종자)재배에서 친환경 잡초관리를 위한 왕우렁이 이용 기술개발)

  • Park, Kwang-Ho
    • Korean Journal of Weed Science
    • /
    • v.32 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • This experiment was conducted to determine a potential effective biological weed control and/or rice young seedling injury by golden apple snail (Pomacea canaliculata) at wet hill seeded rice field. The rice seeds used were treated by iron-coating. The efficacy of weed control as affected by golden apple snail has been tested with twice applications of young golden apple snails of 12 kg (24,000 young snails, $0.5g{\pm}10%$ per young snail, 30~40 days after hatching) per ha at the same day after harrowing and applied with rate of 10 kg (20,000 young snails) per ha at 15days after seeding, respectively. The comparison of this experiment was of the conventional machine transplanted rice paddy field in terms of weed control and rice plant injury as a visual grade. The weed efficacy was of 100% similar with the conventional paddy field which was applied by systematic herbicides of pre-emergence and post-emergence chemical herbicides and there was 1~3% significant rice young seedling injury but no yield losses and grain quality due to the input of golden apple snail.

Effects of Interruption Layer for Capillary Rise on Salt Accumulation and Kentucky Bluegrass Poa pratensis Growth in Sand Growing Media over the Reclaimed Saline Soil (임해 간척지에서 모래상토 층에 모세관수 차단 층의 도입이 염류 집적과 켄터 키블루그래스 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.106-116
    • /
    • 2010
  • This research was conducted to determine the effect of interruption layer for capillary rise on the sand based growing media when growing Kentucky bluegrass (Poa pratensis L.) on soil reclamation and saline water irrigation. Growing media profile consists of three layers as top soil of 30 cm, 20 cm of the interruption layer for capillary rise and 10 cm of reclaimed paddy soil. Growing media profile was packed in 30 cm diameter column pots. The top soil was a mixture of sand dredged up from Lake Bhunam Tae Ahn, Korea and peat at the ratio of 95:5 by volume. Bottom part of column was covered with plastic net and the pots were soaked into 5 cm depth saline water reservoir with salinity $3-5\;dS\;m^{-1}$. Kentucky bluegrass was established by sod and irrigated using $2\;dS\;m^{-1}$ saline water ($5.7\;mm\;day^{-1}$) in 3 days interval. The results showed that the largest accumulation of salt in the spring with electrical conductivity in saturated extract (ECe) of $5.4\;dS\;m^{-1}$ and sodium absorption ratio (SAR) 34.0 in growing media without the interruption layer for capillary rise and ECe of $4.6\;dS\;m^{-1}$ and SAR 8.24 at growing media using gravel as the interruption layer for capillary rise material. The interruption layer for capillary rise of gravel and coarse sand reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the growing media. Visual quality of Kentucky bluegrass was higher in growing media with the interruption layer for capillary rise of gravel than no interruption layer by 8.3 compared to 7.9 in rates. The interruption layer for capillary rise of gravel and coarse sand enhanced the visual quality by 4.1 and 4.0%, root length by 50 and 38%, and root dry weight by 35 and 17% of Kentucky bluegrass, and reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the growing media.

Effects of Salinity Level and Irrigation Rate on Kentucky Bluegrass (Poa pratensis L.) Growth and Salt Accumulation in Sand Growing Media Established Over the Reclaimed Saline Soil (염해지 토양을 기반으로 조성된 모래 지반구조에서 관수용수의 량 및 염농도에 따른 토양내 염류 집적과 켄터키 블루그래스의 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.79-88
    • /
    • 2011
  • The purpose of this study was to obtain information on rates and salinity levels of irrigation for growth of Kentucky bluegrass by minimizing the hazard of salt accumulation in the sand based growing medium. Root zone profile consists of 20 cm sand based top soil, 20 cm of coarse sand as layer to interrupt capillary rise and 10 cm of reclaimed paddy soil as a base of the root zone profile. Topsoil was a mixture of dredged sand and peat with a ratio of 95%: 5% by volume. The columns were soaked into 5 cm depth saline water reservoir with salinity level of 3-5 $dSm^{-1}$. Salinity levels of irrigation water were 0, 2 and 3 $dSm^{-1}$. Irrigation rates were 3.8, 5.7 and 7.6 mm $day^{-1}$ which were equivalent to 70%, 100% and 130% of average ET (evapotranspiration) rate of Kentucky bluegrass, and irrigation interval was 3 days. Salt accumulation was due to irrigated water and moved up water from shallow water base. At the end of second year, the accumulation of salt in the rootzone showed ECc of3.86, 4.7 and 5.1 $dSm^{-1}$, and SAR of 19.2, 23.9 and 27.5 when the salinities were 0, 2 and 3 dS $m^{-1}$, respectively. Irrigation rates of 100% and 130% of ET rate with saline water did not decrease ECe and SAR in growing media. The growth of KEG was influenced by irrigation rate in the $1^{st}$ year, however, salinity level was more critical in the $2^{nd}$ year. Compared to non-saline water, saline water of 2 and 3 dS $m^{-1}$ resulted in decreased visual quality by 3.2% and 16.5%, by 6.4% and 39.3% in clipping weight, and by 5.5% and 5.0% in root mass, respectively.

Effects of Several Amendment Materials on Salt Accumulation and Kentucky Bluegrass (Poa pratensis L.) Growth in Sand Growing Media Established Over the Reclaimed Saline Soil (염해지 토양을 기반으로 조성된 모래 지반구조에서 토양개량제 종류에 따른 토양내 염류 집적과 켄터키 블루그래스(Poa pratensis L.)의 생육)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.208-216
    • /
    • 2011
  • The purpose of this study was to find soil-amendment materials those support the growth of Kentucky bluegrass and reduce salt accumulation at the sand based growing media in saline conditions. Rootzone profile in columns consisted of 20 cm of top soil, 20 cm coarse sand as capillary rise interruption layer and 10 cm reclaimed paddy soil as the base of the profile. Top soils were mixtures of dredged sand (DS) and amendment with compositions of 90% sand + 10% peat moss (SP), 80% sand + 10% soil + 10% bottom ash (SSoBa), 80% sand + 20% soil (SSo), 90% sand + 5% peat + 5% zeolite (SPZ), and 80% sand + 20% bottom ash (SBa). The top soil mixtures of DS and amendments were treated with and without gypsum (Gp). The columns were soaked into 5 cm depth saline water reservoir with the salinity level of $3-5dSm^{-1}$. Irrigation of $2dSm^{-1}$ saline water with rate of $5.7mm\;day^{-1}$ was applied by 3 day interval. Application of zeolite decreased SAR, application of gypsum decreased ECe of the sand amended by peat + zeolite and decreased the SAR of sand amended by bottom ash. The SP and SSoGp resulted in higher clipping dry weight of Kentucky bluegrass. The SSoGp and SPZGp showed longer root lengths. The SP and SBaGp showed higher visual quality. Addition of gypsum to soil and bottom ash treatments resulted in the increased shoot growth, whereas additional gypsum to the treatments of peat, soil and zeolite increased the root growth of Kentucky bluegrass.