• Title/Summary/Keyword: Visual object

Search Result 1,238, Processing Time 0.028 seconds

A Salient Based Bag of Visual Word Model (SBBoVW): Improvements toward Difficult Object Recognition and Object Location in Image Retrieval

  • Mansourian, Leila;Abdullah, Muhamad Taufik;Abdullah, Lilli Nurliyana;Azman, Azreen;Mustaffa, Mas Rina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.769-786
    • /
    • 2016
  • Object recognition and object location have always drawn much interest. Also, recently various computational models have been designed. One of the big issues in this domain is the lack of an appropriate model for extracting important part of the picture and estimating the object place in the same environments that caused low accuracy. To solve this problem, a new Salient Based Bag of Visual Word (SBBoVW) model for object recognition and object location estimation is presented. Contributions lied in the present study are two-fold. One is to introduce a new approach, which is a Salient Based Bag of Visual Word model (SBBoVW) to recognize difficult objects that have had low accuracy in previous methods. This method integrates SIFT features of the original and salient parts of pictures and fuses them together to generate better codebooks using bag of visual word method. The second contribution is to introduce a new algorithm for finding object place based on the salient map automatically. The performance evaluation on several data sets proves that the new approach outperforms other state-of-the-arts.

The development of a visual tracking algorithm for the stable grasping of a moving object (움직이는 물체의 안정한 파지를 위한 시각추적 알고리즘 개발)

  • Cha, In-Hyuk;Sun, Yeong-Gab;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.187-193
    • /
    • 1998
  • This paper proposes an advanced visual tracking algorithm for the stable grasping of a moving target(2D). This algorithm is programmed to find grasping points of an unknown polygonal object and execute visual tracking. The Kalman Filter(KF) algorithm based on the SVD(Singular Value Decomposition) is applied to the visual tracking system for the tracking of a moving object. The KF based on the SVD improves the accuracy of the tracking and the robustness in the estimation of state variables and noise statistics. In addition, it does not have the numerical unstability problem that can occur in the visual tracking system based on Kalman filter. In the grasping system, a parameterized family is constructcd, and through the family, the grasping system finds the stable grasping points of an unknown object through the geometric properties of the parameterized family. In the previous studies, many researchers have been studied on only 'How to track a moving target'. This paper concern not only on 'how to track' but also 'how to grasp' and apply the grasping theory to a visual tracking system.

  • PDF

Robust 3D visual tracking for moving object using pan/tilt stereo cameras (Pan/Tilt스테레오 카메라를 이용한 이동 물체의 강건한 시각추적)

  • Cho, Che-Seung;Chung, Byeong-Mook;Choi, In-Su;Nho, Sang-Hyun;Lim, Yoon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.77-84
    • /
    • 2005
  • In most vision applications, we are frequently confronted with determining the position of object continuously. Generally, intertwined processes ire needed for target tracking, composed with tracking and control process. Each of these processes can be studied independently. In case of actual implementation we must consider the interaction between them to achieve robust performance. In this paper, the robust real time visual tracking in complex background is considered. A common approach to increase robustness of a tracking system is to use known geometric models (CAD model etc.) or to attach the marker. In case an object has arbitrary shape or it is difficult to attach the marker to object, we present a method to track the target easily as we set up the color and shape for a part of object previously. Robust detection can be achieved by integrating voting-based visual cues. Kalman filter is used to estimate the motion of moving object in 3D space, and this algorithm is tested in a pan/tilt robot system. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

Design of Fuzzy Logic System for Mobile Robot based on Visual Servoing

  • Song, Un-Ji;Yoo, Seog-Hwan;Choi, Byung-Jae
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.113-117
    • /
    • 2005
  • This paper describes a visual control scheme, fuzzy logic system for visual servoing of an autonomous mobile robot. An existing communication autonomous mobile robot always needs to keep the object in image to detect the moving object. This is a problem in an autonomous mobile robot for spontaneous activity. To solve it, some features for an object are taken from an image and then use in the design of fuzzy logic system for decision of moving location and direction of visual servoing contrivance(apparatus). So continuous tracking is possible by moving the visual servoing contrivance. We present some simulation results and further studies in the Section of Simulation and Concluding Remarks.

  • PDF

Trends on Object Detection Techniques Based on Deep Learning (딥러닝 기반 객체 인식 기술 동향)

  • Lee, J.S.;Lee, S.K.;Kim, D.W.;Hong, S.J.;Yang, S.I.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.23-32
    • /
    • 2018
  • Object detection is a challenging field in the visual understanding research area, detecting objects in visual scenes, and the location of such objects. It has recently been applied in various fields such as autonomous driving, image surveillance, and face recognition. In traditional methods of object detection, handcrafted features have been designed for overcoming various visual environments; however, they have a trade-off issue between accuracy and computational efficiency. Deep learning is a revolutionary paradigm in the machine-learning field. In addition, because deep-learning-based methods, particularly convolutional neural networks (CNNs), have outperformed conventional methods in terms of object detection, they have been studied in recent years. In this article, we provide a brief descriptive summary of several recent deep-learning methods for object detection and deep learning architectures. We also compare the performance of these methods and present a research guide of the object detection field.

An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance (지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

A Study on the Visual System of Object - Oriented Based on Abstract Information (객체지향을 기반으로한 추상화 정보의 시각화 시스템에 대한 연구)

  • Kim, Haeng-Kon;Han, Eun-Ju;Chung, Youn-Ki
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2434-2444
    • /
    • 1997
  • As software industry progresses, the necessity of visual information have increased more than text-oriented information. So, automatic tools are required to satisfy a user's desire for visual design representation of various source information in the real-world. In this paper, we discuss the methodology and tools for parsing abstract information through semantic analysis and extracting visual information through visual mapping. Namely, as to abstract informations are represented as relational structure and then mapped into visual structure using regular rule, user can obtain visual information. We suggest VOLS(Visual Object Layout System) to transform a abstract information to visual information. It can improve user understandability and assist a maintenance for existing source code.

  • PDF

Objects Tracking of the Mobile Robot Using the Hybrid Visual Servoing (혼합 비주얼 서보잉을 통한 모바일 로봇의 물체 추종)

  • Park, Kang-IL;Woo, Chang-Jun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.781-787
    • /
    • 2015
  • This paper proposes a hybrid visual servoing algorithm for the object tracking by a mobile robot with the stereo camera. The mobile robot with the stereo camera performs an object recognition and object tracking using the SIFT and CAMSHIFT algorithms for the hybrid visual servoing. The CAMSHIFT algorithm using stereo camera images has been used to obtain the three-dimensional position and orientation of the mobile robot. With the hybrid visual servoing, a stable balance control has been realized by a control system which calculates a desired angle of the center of gravity whose location depends on variations of link rotation angles of the manipulator. A PID controller algorithm has adopted in this research for the control of the manipulator since the algorithm is simple to design and it does not require unnecessary complex dynamics. To demonstrate the control performance of the hybrid visual servoing, real experiments are performed using the mobile manipulator system developed for this research.

Query-based Visual Attention Algorithm for Object Recognition of A Mobile Robot (이동로봇의 물체인식을 위한 질의 기반 시각 집중 알고리즘)

  • Ryu, Gwang-Geun;Lee, Sang-Hoon;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.50-58
    • /
    • 2007
  • In this paper, we propose a query-based visual attention algorithm for effective object finding of a vision-based mobile robot. This algorithm is developed by extending conventional bottom-up visual attention algorithms. In our proposed algorithm various conspicuity maps are merged to make a saliency map, where weighting values are determined by query-dependent object properties. The saliency map is then used to find possible attentive location of queried object. To show the validities of our proposed algorithm, several objects are employed to compare performances of our proposed algorithm with those of conventional bottom-up approaches. Here, as one of exemplar query-dependent object property, color property is used.

Active Shape Model-based Object Tracking using Depth Sensor (깊이 센서를 이용한 능동형태모델 기반의 객체 추적 방법)

  • Jung, Hun Jo;Lee, Dong Eun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.141-150
    • /
    • 2013
  • This study proposes technology using Active Shape Model to track the object separating it by depth-sensors. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust object can be extracted. The proposed algorithm removes the horizontal component from the information of the initial depth map and separates the object using the vertical component. In addition, it is also a more efficient morphology, and labeling to perform image correction and object extraction. By applying Active Shape Model to the information of an extracted object, it can track the object more robustly. Active Shape Model has a robust feature-to-object occlusion phenomenon. In comparison to visual camera-based object tracking algorithms, the proposed technology, using the existing depth of the sensor, is more efficient and robust at object tracking. Experimental results, show that the proposed ASM-based algorithm using depth sensor can robustly track objects in real-time.