• Title/Summary/Keyword: Visual depth

Search Result 590, Processing Time 0.024 seconds

Depth Map Denoising Based on the Common Distance Transform (공동 거리 변환 기반의 깊이맵 잡음 제거)

  • Kim, Sung-Yeol;Kim, Man-Bae;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.565-571
    • /
    • 2012
  • During depth data acquisition and transmission, the quality of depth maps is usually degraded by physical noise and coding error. In this paper, a new joint bilateral filter based on the common distance transform is presented to enhance the low-quality depth map. The proposed method determines the amount of exploitable color data according to distance transform values of depth and color pixels. Consequently, the proposed filter minimizes noise in the depth map while suppressing visual artifacts of joint bilateral filtering. Experimental results show that our method outperforms other conventional methods in terms of noise reduction and visual artifact suppression.

Eyes and Lenses: A Comparison and Differences

  • Egamberdiev, Khojiakbar
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.43-46
    • /
    • 2016
  • This article will compare the following visual categories: visual angle, distinguishable details, sensitivity, and dynamic range. These categories are often considered within the subject of the maximum deviation from the camera eye, an issue which has generated much controversy. Other characteristics such as depth of field, three-dimensional vision, white balance and color, are not considered in this article.

A study on characteristics related to texture, colour temperature and contrast ratio to improve the depth of stereoscopic images (깊이감 향상을 위한 질감, 색온도, 대비비 관련 특성 연구)

  • Hong, Ji-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.37-42
    • /
    • 2018
  • With advancements in digital image production technology, the branch of stereoscopic image technology has also been undergoing active development. Accordingly, research and development on cutting-edge display products for mounting stereoscopic images are currently being pursued. There are various problems that can occur when viewing 3D images. Because viewers feel visual fatigue while perceiving the depth of the images provided via an artificial method, a negative human factor such as visual fatigue has become one of the most prominent concerns, especially as it is a factor that affects the ongoing maintenance of 3D images. Therefore, by identifying the factors affecting the depth of the graphic images provided in 2D images, and subsequently using this information to develop an image processing method, we conducted depth-related experiments and analysed them under the assumption that stereoscopic images could be reproduced without visual fatigue. Thus, we analysed the most significant factors related to depth and verified the interactions by performing depth-related factors-based ANOVA variance analysis by differentially applying the texture, colour temperature, and contrast ratio to graphic images. We determined the significance of the factors related to depth and proposed a method to improve depth based on an analysis of the results of the experiments conducted in this study.

Image-based Surfel Reconstruction by LDI Plane Sweeping (LDI 평면 이동에 의한 이미지 기반 Surfel 복원)

  • Lee, Jung;Kim, Chang-Hun
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.947-954
    • /
    • 2009
  • This paper proposes a novel method that reconstructs a surfel-based object by using visual hull from multiple images. The surfel is a point primitive that effectively approximates point-set surface. We create the surfel representation of an object from images by combining the LDC(Layered Depth Cube) surfel sampling with the concept of visual hull that represents the approximated shape from input images. Because the surfel representation requires relatively smaller memory resources than the polygonal one and its LDC resolution is freely changed, we can control the reconstruction quality of the target object and acquire the maximal quality on the given memory resource.

Visual Information Selection Mechanism Based on Human Visual Attention (인간의 주의시각에 기반한 시각정보 선택 방법)

  • Cheoi, Kyung-Joo;Park, Min-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.378-391
    • /
    • 2011
  • In this paper, we suggest a novel method of selecting visual information based on bottom-up visual attention of human. We propose a new model that improve accuracy of detecting attention region by using depth information in addition to low-level spatial features such as color, lightness, orientation, form and temporal feature such as motion. Motion is important cue when we derive temporal saliency. But noise obtained during the input and computation process deteriorates accuracy of temporal saliency Our system exploited the result of psychological studies in order to remove the noise from motion information. Although typical systems get problems in determining the saliency if several salient regions are partially occluded and/or have almost equal saliency, our system is able to separate the regions with high accuracy. Spatiotemporally separated prominent regions in the first stage are prioritized using depth value one by one in the second stage. Experiment result shows that our system can describe the salient regions with higher accuracy than the previous approaches do.

A Real-Time Virtual Re-Convergence Hardware Platform

  • Kim, Jae-Gon;Kim, Jong-Hak;Ham, Hun-Ho;Kim, Jueng-Hun;Park, Chan-Oh;Park, Soon-Suk;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • In this paper, we propose a real-time virtual re-convergence hardware platform especially to reduce the visual fatigue caused by stereoscopy. Our unique idea to reduce visual fatigue is to utilize the virtual re-convergence based on the optimized disparity-map that contains more depth information in the negative disparity area than in the positive area. Our virtual re-convergence hardware platform, which consists of image rectification, disparity estimation, depth post-processing, and virtual view control, is realized in real time with 60 fps on a single Xilinx Virtex-5 FPGA chip.

Effects of Tele-Robotic Task Characteristics on the Choice of Visual Display Dimensionality (텔레로봇 작업의 특성이 시각표시장치의 유형 결정에 미치는 영향 연구)

  • Park, Seong-Ha;Gu, Jun-Mo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2004
  • The effects of task characteristics on the relative efficiency of visual display dimension were studied using a simulated tele-robotic task. Through a conventional method of task analysis. the tele-robotic task was divided into two categories: the task element requiring focused attention (FA task) and the task element requiring global attention (CA task). Time-ta-completion data were collected for a total of 120 trials involving 10 participants. For the CA task. there was no significant difference between the multiple two-dimensional (20) display and the three-dimensional (3D) monocular display. For the FA task. however. the multiple 20 display was superior to the 3D monocular display. The results suggest that the characteristics of a given task have a considerable effect on the choice of display dimensionality and the multiple 3D display is better for human operators to effectively judge depth if the task requires frequent use of focused attention.

2D-to-3D Stereoscopic conversion: Depth estimation in monoscopic soccer videos (단일 시점 축구 비디오의 3차원 영상 변환을 위한 깊이지도 생성 방법)

  • Ko, Jae-Seung;Kim, Young-Woo;Jung, Young-Ju;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.427-439
    • /
    • 2008
  • This paper proposes a novel method to convert monoscopic soccer videos to stereoscopic videos. Through the soccer video analysis process, we detect shot boundaries and classify soccer frames into long shot or non-long shot. In the long shot case, the depth mapis generated relying on the size of the extracted ground region. For the non-long shot case, the shot is further partitioned into three types by considering the number of ground blocks and skin blocks which is obtained by a simple skin-color detection method. Then three different depth assignment methods are applied to each non-long shot types: 1) Depth estimation by object region extraction, 2) Foreground estimation by using the skin block and depth value computation by Gaussian function, and 3)the depth map generation for shots not containing the skin blocks. This depth assignment is followed by stereoscopic image generation. Subjective evaluation comparing generated depth maps and corresponding stereoscopic images indicate that the proposed algorithm can yield the sense of depth from a single view images.

Direct Depth and Color-based Environment Modeling and Mobile Robot Navigation (스테레오 비전 센서의 깊이 및 색상 정보를 이용한 환경 모델링 기반의 이동로봇 주행기술)

  • Park, Soon-Yong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.194-202
    • /
    • 2008
  • This paper describes a new method for indoor environment mapping and localization with stereo camera. For environmental modeling, we directly use the depth and color information in image pixels as visual features. Furthermore, only the depth and color information at horizontal centerline in image is used, where optical axis passes through. The usefulness of this method is that we can easily build a measure between modeling and sensing data only on the horizontal centerline. That is because vertical working volume between model and sensing data can be changed according to robot motion. Therefore, we can build a map about indoor environment as compact and efficient representation. Also, based on such nodes and sensing data, we suggest a method for estimating mobile robot positioning with random sampling stochastic algorithm. With basic real experiments, we show that the proposed method can be an effective visual navigation algorithm.

  • PDF

A New 3D Depth Reconstruction Method Adaptive to Various Environments (환경 적응적 3D 깊이 재구성 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.271-279
    • /
    • 2016
  • The recent development of the HD (High Definition) and UHD (Ultra High Definition) technology allowed the growth of 3D contents market. Yet the majority of the 3D contents in the market are strictly for 6.5 cm inter-ocular distance, causing various visual discomforts for the viewers who have different inter-ocular distance. Moreover, because the 3D contents are created for a fixed viewing distance, the change of the viewing distances when watching 3D contents can also cause visual conflicts. To solve this problem, we devised techniques that consider the environmental information of the viewer watching 3D contents. By analyzing the relationship between viewing distance, inter-ocular distance, and perceived depth, we created an adaptive content viewing system that reflects the viewer's environment to minimize any conflicts in watching 3D contents. From our experiments, we found that the performance of our adaptive content viewing system was reasonable.