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Abstract This paper proposes a novel method that reconstructs a surfel~based object by using
visual hull from multiple images. The surfel is a point primitive that effectively approximates point-set
surface. We create the surfel representation of an object from images by combining the LDC(Layered
Depth Cube) surfel sampling with the concept of visual hull that represents the approximated shape
from input images. Because the surfel representation requires relatively smaller memory resources
than the polygonal one and its LDC resolution is freely changed, we can control the reconstruction
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quality of the target object and acquire the maximal quality on the given memory resource.

Key words

1. Introduction

Recent advances in scanning devices make it easy
to acquire hundreds of millions of points. So the
geometric objects have so many polygons and it is
difficult to manipulate them. When rendering these
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large and dense polygonal meshes, several primitives
may often overlapped in one pixel. This redudancy
cannot be ignored in time-critical applications. Addi-
tionally, triangulation may corrupt the geometry by
forcing connections between scanned points,

So the point-based geometry has been focused,
because it does not require the point connectivity
information and less memory resources. Grossman
and Dally[1] sampled point data sets from geometric
models for their point rendering. They also addressed
the issues of sampling rate and gaps in the point-
rendered images. The surfel rendering schemei2)
has been proposed to render large sets of points. A
surfel is a point primitive that has a position, a
normal vector, and a disk radius, By using an octree-
based structure and forward warping technique,
surfel objects are rendered accurately at interactive
frame rates.

In order to create continuous surfaces from irregu—
larly spaced point samples, splat-based approaches
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have been suggested. QSplat[3] replaces point pri-
mitives by ellipses or rectangles when projected
onto image space. A hierarchical bounding sphere
structure facilitates time-critical rendering. Surface
splatting{4] applies EWA(Elliptical Weighted Average)
texture filtering in object space and has achieved
the image of high quality including antialiasing
capabilities.

Alexa et al[5] have proposed a new method to
compute and render point-set surfaces using a MLS
(Moving Least Squares). A new explicit definition
of point-set surfaces{6] has also been introduced to
represent various point primitives such as splats and
surfels.

As an application of peoint geometry, Adams and
Dutre[7] proposed CSG(Constructive Solid Geometry)
operations on free-form solids bounded by surfels.
By resampling surfels that intersect with the sur-
face of another solid, they maintain sharp boundaries.
They have shown that surfels provide a useful tool
for interactive editing of free-form solids.

Volumetric carving algorithms[89] recover the
voxel representation of a shape from multiple images.
A complete 3D model is created by iteratively elimi-
nating, voxels from an initial large volume covering
the target object. They called this elimination pro-
cess ‘carving’. The decision to carve a voxel is
determined by its color-consistency on its visible
images. They introduce plane sweeping technique
that frees the carving process from vision constraints
such as occlusion or parallax. But they have some
serious problems in voxel quantization and large
memory resource. When the resolution of an initial
volume is lower than that of source images, the
final rendered images are so blurred and lose the
object details. And the voxels of the initial bounding
volume has been arranged regularly, including so
many potential empty ones, the memory resource is
wasted uselessly in most cases.

This paper proposes a novel method of creating
surfels from multiple images. To reconstruct them
accurately, we combine the LDC surfel sampling
scheme with the concept of the visual hull{10]. And
we introduces LDI(Layered Depth Image) plane
sweeping technique instead of the static bounding

volume, we reduce the amount of memory required,
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thus allowing us to increase the sampling resolufion.

The remainder of this paper is organized as fol-
lows. Section 2 introduces some definitions and
assumptions. Our modified surfel sampling method
is explained in Section 3. Section 4 shows some
experimental results and discussion. Then we con-

clude this paper in Section 5.

2. Definitions and Assumptions

2.1 Image Constraints

As with image-based modeling approaches, we
start with calibrated images that captured from
arbitrarily distributed cameras. That is to say, we
already know the projection matrices of all input
images. To evaluate the efficiency and accuracy of
our method, we use synthetic images with a seg-
mented background (see Figure 1).

Figure 1 Input Image Acquisition

2.2 Image-based Surfel Representation

The surfel is an effective point primitive for ren-
dering the high~quality images of point geometry
without requiring explicit connectivity between adja-
cent points. Each surfel is often rendered as a cir-
cular disk which has attributes including its position
(px, Pw P2, normal vector nlny, ny, n:), and disk
radius r. Surfels and their attributes have been
usually sampled from the existing 3D models. In
this paper, however, we will generate surfels from
multiple images and Figure 2 shows our scheme of
point-set object reconstruction from images.
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Figure 2 The Concept of Surfel Sampling from Multi-
ple Images

3. Visual Hull Based Surfel Sampling

We will now explain in detail how to sample sur-
fels and their attributes from multiple images. In
the original surfel sampling method(2], surfels are
sampled by using a ray-surface intersection test on
polygonal model. So it is a major problem that we
don't know the surfaces of a target shape when we
sample surfels from images. In the image-based
approaches, the approximation of the true surfaces
is called the visual hull. So we create surfels that
are assumed to he on the surfaces of the visual
hull using color-consistency constraint (see Figure 3).

Figure 4 shows the processing steps. First, we
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Figure 3 A 2D Illustration of Surfel Sampling Using
a Visual Hull
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Figure 4 Algorithm Overview

create an LDC structure which consists of 3 LDIs
with user—specified sampling resolution m. [2,11]
Then we sweep each LDI plane in 6 directions
parallel to the x, y, and z axes, not ray casting
performed in the previous approach [2]. As each
LDI plane moves, some cameras are activated to be
included in color-consistency test. For each LDI
pixel position, the color-consistency test finds whe-
ther a surfel is sampled at that position. After all
the space has been swept, the disk radii and normal
vectors of the sampled surfels are estimated and
the reconstructed surfel objects are finally acquired.

3.1 LDI Plane Sweeping

Before testing the color-consistency of each LDI
pixel for carving, we must determine the set of
images in which the current LDI pixel position is
visible - not occluded by the other LDI pixels. This
is called visibility computation. We introduce a novel
method that combines LDC sampling scheme with -
the plane sweeping method[9] and is called LDI
plane sweeping. The detailed process is as follows.

In this process, we move the sweep planes, called
LDI planes in this paper, in positive and negative
directions parallel to the x, y, and z axes. In the
previous method[9], the sweep planes were sligthly
moved along each direction by the static voxel grid
spacing. But we can move the LDI planes by a
user—specified sampling interval ds (see Figure 5).
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Figure 5 LDI Plane Sweeping Overview

When each LDI plane is moved, we investigate
the cameras to be activated in color-consistency
test. As LDI plane moves, each camera is activated
to be included in the color-consistency test, if it is
behind the LDI plane and the angle between its
viewing direction and sweep direction is within a
threshold . To avoid the problem of blurring in
the image capturing pipeline, we set the threshold
0 to 60°. As seen in Figure 5(a), only Camera 1
and 2 are activated. Camera 3 is additionaly acti-
vated as the LDI plane passes it (see Figure 5(b)).
Although Camera 10 is also passed by LDI plane,
it cannot be activated because its viewing direction
is too far from the sweep direction. By adjusting ds
appropriately, we can control the density of the
sampled surfels and avoid the lack of precision intro-
duced by the previous voxel carving methods [89).

3.1.1 Color-consistency Constraint

After the camera activation, we sample surfels at
the L.DI pixels that are assumed to be on the sur-
faces of visual hull. As widely known, visual hull
represents the maximal shape and appearance com-
puted from images. Seitz et al. introduces color-con~
sistency constraint to compute visual hull accurately.
They assumed the Lambertian illumination model
that shows the pure diffuse reflection only and
noticed that the point on the true surface emits the
consistent color in any images that capture it. This
means that if a certain LDI pixel shows the con-

sistent color in all of its projected pixels on its
visible images, it must be a valid surface point. In
this paper, all of LDI pixels are tested whether
they show consistent colors in the corresponding
images of the activated cameras and surfels are
sampled at the color-consistent LDI pixel positions.
But because they don’t show the exactly same
color due to the image digitizing process and spe-
cular effects existing in real world, we set a thre-
shold value and determine a LDI pixel to be valid
if its variation of projected pixel color is within
that value.

Figure 6 shows a 2D example of the color-consis-
tency test. In Figure 6(a), LDI pixel 1 is determined
not to be on the surface because it has different
colors in the images taken by Camera 1 and 2. LDI
pixel 2 shows consistent colors in all activated
cameras, so a surfel is created at that position. LDI
pixel 3 needs no color-consistency test because its
projection on the Camera 2 is in the background
area and this is definitely outside the target object.
From the known property of visual hull, if a certain
area is projected onto the background of any image,
that is fully outside the target object.

After moving the LDI plane by ds, the same pro-
cess is performed on all LDI pixels. Notice that
Camera 3 is not included in testing the color-consis~
tency of LDI pixel 4, because this LDI pixel projects
on the area already occupied by LDI pixel 2 in the
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(a)
Figure 6 2D Example of Color-consistency Test

previous step, This means that LDI pixel 4 is not
visible from Camera 3. This property is called ordinal
visibility. By testing LDI pixel 4 with Cameras 1
and 2, another surfel is created at that position. For
the same reason, camera 2 is not considered in test-
ing LDI pixel 5.

Because this scheme maintains an ordinal visibility
that robustly captures all occlusion relations, we
can perform both visibility computation and surfel
sampling at the same time.

312 Surfel Attributes Estimation

In this paper, a swrfel is rendered as a circular
disk with its radius. So we need to compute the
radius and normal vector of each reconstructed surfel.
To guarantee that adjacent surfels are slightly over—
lapped and fill the reconstructed surface, we set the
surfel radius r to the maximum distance between
adjacent surfels in the reconstructed surfel object.
The maximum distance is simply computed using
LDI pixel spacing dp and the sampling interval ds
(see Equation 1).

2 2
r=\}2xdp +ds )

The normal vectors are important to render surfels
with an appropriately shaded color. Because we
know only their sampled positions yet, the existing
normal calculation methods cannot be applied.

: ~Z axis
LPI, LDI,
atz=g,  atRmE
(b)

Figure 7 2D Ilustration of Surfel Normal Approxi-
mation from Images

We notice that normal vector is headed to the
outside direction from the object. Using this obser-
vation, we investigate the 2D normal vectors of
each surfe] projected onto all visible images. These
2D vectors are converted into 3D ones. By averaging
these 3D vectors computed on each visible image,
we can robustly approximate normal vector of each
surfel. Figure 7 shows an example of our image-
based normal calculation process. We calculate V,
from its projection to the Camera 1 and V: from
the Camera 2. Final normal vector N on that surfel
is approximated by averaging Vi and Vi As seen
in this figure, they are guaranteed to be towards
outside.

4. Results & Discussion
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Our experiments were performed on a system
with Pentium IV 28GHz CPU and 1GB RAM. We
reconstruct each surfel object from 36 images with
512% resolution and 0.5 pixel sampling interval. (see
Figure 8) The surfels sampled by our method are
rendered by PointShop3D 2.0, which is free surfel
rendering software written by Zwicker et al.[12].

Figure 9 shows the rendered results of the recon-
structed ‘Knot' model.
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Figure 8 36 Source Images of ‘Knot' Model
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(a)
Figure 10 Reconstructed ‘Knot’. With Randomized
(d) 2 Pixels, (e) 4 Pixels
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arbitrary viewpoints that are not included in the
source images. As seen in this figure, our method
works well on an object with complex.

Figure 10 shows the robustness of our algorithm
for the calibration error. If we apply our algorithm
to real photos in practice, the calibration error must
be the most critical obstacle in the process. For
simulating the calibration error condition, we add
randomized pixel errors in to the projected LDI
pixel positions onto source images. Figure 10(a) is
the reconstruction result of a ‘knot’ model with no
projection error. And Figure 10(b~¢) are the mag-
nified view of the rectangular area of Figure 10(a)
for different reconstruction results with varying pro-
jection error. As shown in this figure, the outlier
and the incorrectly color-mapped (rendered as white)
surfels are increased according to the growing cali-

bration error, but they still represent the target shape

well.

Projection Error Bound. (b) No Error, (c) 1 Pixel,
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Figure 11 shows reconstruction results for the
different sampling intervals. We expected that the
visual quality will be enhanced if the sampling
interval decreases. But Figure 11(b) shows better
appearance and less outlier surfels than Figure
11(c), although Figure 11{c) is more densely sampled.
These unexpected results might come from the fact
that the outlier surfels also increase because surfels
are excessively sampled by the smaller sampling
interval. The increase of outlier surfels causes the
degradation of visual quality. In Figure 11(a), the
falling-off in its quality is natural, because the sam-
pling interval is too large to capture the subtle
details of the target object.

Figure 12 shows the limitation of our approach.
As seen in this figure, there exist still incompletely
recovered surfels, although those regions are visible
in some source images. This artifact comes from
the

Actually, even if a LDI pixel shows the consistent

inherent property of color-consistency test.

colors in its visible images, it can be outside the
target object actually. So outlier surfels showing

in its visible images are also

consistent colors

recovered.
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Figure 13 Results for different numbers of source
images and sampling resolutions of the LDI

Figure 13 compares the varying results for a ‘knot’
model by changing the number of source images
and the sampling resolution of the LDI These
results are rendered from a new viewpoint which

(@)

(b)

(9)

Figure 11 Reconstructed ‘Dragon’ for Different Sampling Intervals. (a) 2.0, (b) 1.0, (c) 0.5

Figure 12 Reconstructed ‘Dragon’ Model
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was not used for generating any of the source

images. The quality of the reconstructed shape
improves as the number of images and the sampling
resolution increase. Note that the visual improvement
by changing the number of images appears a little
when it reaches a certain value, especially from 36
to 81. An accurate shape and appearance is achieved
with 36 images, and little improvement is gained
by using more.

By integrating surfel geometry into the previous
voxel carving mechanism, we can recover the 3D
models with higher quality and render them more
quickly. In addition, the Gaussian blending technique
of surfel rendering scheme also helps us to reduce
the quantization rendering artifacts occurred in the

previous regular grid based approaches.

5. Conclusion and Future Work

We have proposed a novel method to sample sur-
fels from multiple images using the visual hull. Our
LDI plane sweeping method robustly solves the visi-
bility computation problem in surfel sampling step.
By using color-consistency constraint, we obtain
surfels that are close to the true surfaces of a tar-
get object than those created by previous visual
hull approaches. Experimental results show that our
method works robustly on various complex objects.

In a future work, we intend to develop a new
color consistency criterior to eliminate the outlier
surfels in the artifact regions as shown in Figure
10. And it may be possible to reduce some outliers
by optimizing our naive surfel sampling procedure.
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