• 제목/요약/키워드: Visual analytics

검색결과 39건 처리시간 0.031초

Visual Analytic for Intangible Cultural Heritage in China

  • Nan Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.722-729
    • /
    • 2023
  • Visual analytic for intangible cultural heritage has recently developed in China. Using advanced interactive visualization tools experts can observe data distribution trends and explore the implicit relationships among data within a short time. It can enhance human cognitive and analytical abilities and improve the scientific preservation of intangible cultural heritage. To support this research topic, we have reviewed recent visualization works on intangible cultural heritage in China. We divide these works into three types: text visualization, multi-dimensional visualization, and geographical visualization. Each type is illustrated by several representative works. New development trends in this area are also discussed.

마이크로블로그 사용자의 소셜 네트워킹 패턴 분석 및 가시화 시스템 (A Visual Analytics System for Analyzing Social Networking Patterns among Microbloggers)

  • 구윤모;이정진;서진욱
    • 한국게임학회 논문지
    • /
    • 제12권3호
    • /
    • pp.77-86
    • /
    • 2012
  • 최근 트위터와 미투데이 등의 마이크로블로그 서비스가 소셜 네트워킹에서 차지하는 비중이 점점 증가하고 있다. 하지만 이러한 마이크로블로그 서비스는 사용자와 지인들 사이의 메시지를 단순히 시간 순으로 나열하여 보여주기 때문에 사용자와 특정 지인과의 관계를 구체적으로 파악하기는 어렵다. 본 논문에서는 마이크로블로그 서비스를 이용하는 사용자와 지인들이 주고 받은 메시지를 정량적, 정성적, 시간적으로 분석하여 사용자와 지인들과의 관계를 직관적으로 파악할 수 있게 하는 소셜 네트워킹 패턴 분석 및 가시화 시스템을 제안한다. 또한 관계의 변화 패턴을 분류하여 마이크로블로그 서비스 사용자의 인간관계를 관리하고 증진시킬 수 있는 도구도 제공한다. 제안 기법은 스마트폰 어플리케이션에 성공적으로 적용되어 마이크로블로그 서비스 사용자의 인간관계의 분석 및 증진을 위한 도구로서 사용될 수 있다.

트리맵을 이용한 비즈니스 프로세스 수행자간 업무공유 관계 시각화 (Treemapping Work-Sharing Relationships among Business Process Performers)

  • 안현;김광훈
    • 인터넷정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.69-77
    • /
    • 2016
  • 최근에 비즈니스 인텔리전스 분야에서 비주얼 애널리틱스의 중요성이 강조되고 있다. 비즈니스 인텔리전스 관점에서 비주얼 애널리틱스는 다양한 관점의 비즈니스 관련 정보를 인터랙티브한 형태로 시각화함으로써 의사결정에 유용한 인사이트들을 획득하는 것을 목표로 한다. 본 논문에서는 트리맵을 이용하여 비즈니스 프로세스 수행자들간의 업무공유 관계들을 시각화하는 방법을 제안한다. 업무공유 관계는 비즈니스 프로세스의 특정 단위 업무에 공통적으로 참여하는 두 수행자간에 형성되는 연결 관계로서, 프로세스 기반 조직의 구조 및 행동 패턴을 이해하는 데에 중요한 요소이다. 이를 위해, 비즈니스 프로세스의 기본적인 계층적 정보와 수행자간 업무공유 관계를 트리맵의 형태로 나타내는 시각화 도구를 설계 및 구현하였다. 최종적으로 XPDL (XML Process Definition Language) 프로세스 모델을 이용한 실행 예제를 통해 시각화 도구의 유용성을 검증하였다.

실시간 스트림 데이터 분석을 위한 시각화 가속 기술 및 시각적 분석 시스템 (Fast Visualization Technique and Visual Analytics System for Real-time Analyzing Stream Data)

  • 정성민;연한별;정대교;유상봉;김석연;장윤
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권4호
    • /
    • pp.21-30
    • /
    • 2016
  • 위험관리 시스템은 단 시간에 의사결정하기 위해 스트림 데이터를 실시간으로 분석 할 수 있어야 한다. 많은 데이터 분석 시스템은 CPU와 디스크 데이터베이스로 구성되어 있다. 하지만, cpu 기반 시스템은 스트림 데이터를 실시간으로 분석하는데 어려움이 있다. 스트림 데이터는 1ms부터 1시간, 1일까지 생성주기가 다양하다. 한 개의 센서가 생성하는 데이터는 작다. 하지만 수 만개의 센서가 생성하는 데이터는 매우 크다. 예를 들어 10만개 센서가 1초에 1GB 데이터를 생성한다면, CPU 기반 시스템은 이를 분석 할 수 없다. 이러한 이유로 실시간 스트림 데이터 분석 시스템은 빠른 처리 속도와 확장성이 필요하다. 본 논문에서는 GPU와 하이브리드 데이터베이스를 이용한 시각화 가속 기술을 제안한다. 제안한 기술을 평가하기 위해 우리는 지하 파이프라인에 설치된 센서와 트윗 데이터를 활용하여 실시간 릭 탐지 시각적 분석 시스템에 적용했다.

Applying and Evaluating Visualization Design Guidelines for a MOOC Dashboard to Facilitate Self-Regulated Learning Based on Learning Analytics

  • Cha, Hyun-Jin;Park, Taejung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2799-2823
    • /
    • 2019
  • With the help of learning analytics, MOOCs have wider potential to succeed in learning through promoting self-regulated learning (SRL). The current study aims to apply and validate visualization design guidelines for a MOOC dashboard to enhance such SRL capabilities based on learning analytics. To achieve the research objective, a MOOC dashboard prototype, LM-Dashboard, was designed and developed, reflecting the visualization design guidelines to promote SRL. Then, both expert and learner participants evaluated LM-Dashboard through iterations to validate the visualization design guidelines and perceived SRL effectiveness. The results of expert and learner evaluations indicated that most of the visualization design guidelines on LM-Dashboard were valid and some perceived SRL aspects such as monitoring a student's learning progress and assessing their achievements with time management were beneficial. However, some features on LM-Dashboard should be improved to enhance SRL aspects related to achieving their learning goals with persistence. The findings suggest that it is necessary to offer appropriate feedback or tips as well as to visualize learner behaviors and activities in an intuitive and efficient way for the successful cycle of SRL. Consequently, this study contributes to establishing a basis for the visual design of a MOOC dashboard for optimizing each learner's SRL.

Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data

  • Subhanik Purkayastha;Yanhe Xiao;Zhicheng Jiao;Rujapa Thepumnoeysuk;Kasey Halsey;Jing Wu;Thi My Linh Tran;Ben Hsieh;Ji Whae Choi;Dongcui Wang;Martin Vallieres;Robin Wang;Scott Collins;Xue Feng;Michael Feldman;Paul J. Zhang;Michael Atalay;Ronnie Sebro;Li Yang;Yong Fan;Wei-hua Liao;Harrison X. Bai
    • Korean Journal of Radiology
    • /
    • 제22권7호
    • /
    • pp.1213-1224
    • /
    • 2021
  • Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.

일정도표 정보의 지도기반 가시화 기법 (Visual Mapping from Time-Table Information to Map)

  • 이석준;정기숙;정승대;정순기
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.1155-1160
    • /
    • 2006
  • 다양한 과학 분야와 공학 분야에서는 그들이 다루고 있는 특정한 주제의 정보를 좀 더 신속하고, 명확하게 사용자에게 전달하기 위해서 여러 가지 정보 가시화(information visualization) 기법을 사용한다. 정보를 가시화 할 때는 기본적으로 세 가지 과정을 거치는데, 원천 데이터(raw data)로부터 데이터 모델(data model)로 변환하고, 변환된 데이터 모델을 가시화 구조상(visual structure)에 매핑(mapping)시킨 후 정보화 모델(information model)로 변환하게 된다. 본 논문에서는 특정 행사가 진행되고 있는 건물내부에서 발생하는 시간, 공간적인 정보를 정리한 도표 메타포(table metaphor)를 토대로, 해당 데이터 모델로부터 추출한 다양한 정보를 3 차원 지도로 구성된 정보화 모델 상에 반영하기 위한 방법을 제안하였다. 또한, 정보를 단순히 공간상에 반영하기 보다는 사용자의 관심영역(interest area)에 따른 정보의 공간적 의미에 중점을 두어 3차원 공간상에 표현하였다.

  • PDF

교육 빅데이터 관련 연구 동향 (Current Status of Educational Big Data Research)

  • 이은경;박도영;최인봉
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제50차 하계학술대회논문집 22권2호
    • /
    • pp.175-176
    • /
    • 2014
  • 본고에서는 교육 빅데이터의 개념, 가치, 처리 기술 및 분석 방법 등을 탐색하였다. '온라인과 오프라인 교수 학습 활동의 투입, 과정, 산출을 통해 생산되는 국가, 지역, 학교, 교사, 학생 수준의 자료'로 정의할 수 있는 교육 빅데이터는 Hadoop으로 대표되는 분산 컴퓨팅 기술을 통해 효율적으로 처리할 수 있다. 대규모 교육 자료에서 의미있고 유용한 결과를 도출하기 위해 주로 사용되는 분석 방법에는 교육 데이터 마이닝, 학습 분석학과 시각 자료 분석학이 있다. 교육 데이터 마이닝은 학생과 교사, 학교의 다양한 수준에서 자료를 폭넓게 분석하는 측면이 강한 반면에 학습 분석학은 학생 수준에서의 자료 분석에 더 초점을 맞추는 경향이 있으며, 시각 자료 분석학은 자료에 대한 분석 자체보다는 분석 결과를 효과적으로 표현하는 방식에 초점이 주어져 있다.

  • PDF

Interaction of Learning Motivation with Dashboard Intervention and Its Effect on Learning Achievement

  • Kim, Jeonghyun;Park, Yeonjeong;Huh, Dami;Jo, Il-Hyun
    • Educational Technology International
    • /
    • 제18권2호
    • /
    • pp.73-99
    • /
    • 2017
  • The learning analytics dashboard (LAD) is a supporting tool for teaching and learning in its personalized, automatic, and visual aspects. While several studies have focused on the effect of using dashboard on learning achievement, there is a research gap concerning the impacts of learners' characteristics on it. Accordingly, this study attempted to verify the differences in learning achievement depending on learning motivation level (high vs. low) and dashboard intervention (use vs. non-use). The final participants were 231 university students enrolled in a basic statistics course. As a research design, a 2 × 2 factorial design was employed. The results showed that learning achievement varied with dashboard intervention and the interaction effect was significant between learning motivation and dashboard intervention. The results imply that the impact of LAD may vary depending on learner characteristics. Consequently, this study suggests that the dashboard interventions should be offered after careful consideration of individual students' differences, particularly their learning motivation.

BIM and Thermographic Sensing: Reflecting the As-is Building Condition in Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • Journal of Construction Engineering and Project Management
    • /
    • 제5권4호
    • /
    • pp.16-22
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. Several case studies were conducted to experimentally evaluate their impact on BIM-based energy analysis to calculate energy load. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.