본 논문에서는 한국어 숫자음 인식을 위해 음성과 영상 정보를 사용하고, 음성에 사용하는 선형예측계수 알고리즘을 영상에 적용하는 방법을 제안한다. 입력으로 얻어지는 음성신호는 0.95의 매개변수를 통해 고역 신호가 강조되고, 해밍창과 자기상관 분석, Levinson-Durbin 알고리즘에 의해 13차 선형예측계수를 구한다. 마찬가지로, 그레이 영상신호도, 음성의 자기상관 분석, Levinson-Durbin 알고리즘을 사용하여 13차의 2차원 선형예측계수를 구한다, 이러한 음성/영상 신호에 대한 선형예측계수들은 다층 신경회로망에 적용하여 학습이 이루어졌고, 각 레벨의 잡음이 섞인 음성신호를 적용한 결과, 숫자음 '3', '5', '9' 에서 음성만으로 인식한 결과보다 훨씬 좋은 인식결과를 얻을 수 있었다. 결과적으로, 본 연구에서는 영상 신호의 2차원 선형 예측 계수들이 음성인식에 사용될 경우, 특징 추출에 따른 부가적인 알고리즘이 새로 고안될 필요가 없이, 음성특징 계수를 추출하는 방법을 그대로 사용할 수 있으며, 또한 데이터량과 인식율이 잡음 환경에서 보다 향상되는 효율적인 방법을 제시하고 있음을 알 수 있었다.
Korean oil and honey Yukwa has been paid attention as formal cake for traditional national seasons' holiday and religious service. Quality of Yukwa, however, has been maintained arbitrarily by each Yukwa manufacturer. Since even same Yukwa had severe differences in size, weight, and pattern, it has given the negative effect to the consumer. Yukwa industries need to setup the quantitative quality specifications instead of qualitative ones to maintain the uniformity of Yukwa quality. Efficient and economical inspection and process control system should be developed. In developing quality standards of Yukwa, features which can measure quality quantitatively in real time should be properly chosen. Existing quality features such as acidity, oxidization, hardness, viscosity, and texture were measured by the chemical or physical base destructive methods. Many research and developments have been performed in investigating and analyzing chemical transition states of those quality features as environment or storage condition changes. Most methods, however, require either off-line or complex treatment or time consuming process of analysis in evaluating quality features. Consumer, however, selects products mostly based on the external features such as shape, size, and color. Therefore, critical visual quality features should be chosen and the efficient real time measurement system must be developed. In this paper, computer image acquisition and processing system were developed and software modules were developed to extract the quantitative data of those features in real-time. Computer image processing system will promote in maintaining uniform quality of Yukwa and establishing quality standards of Yukwa.
본 논문에서는 컬러와 패턴 정보를 이용하여 텍스타일 영상에 포함된 감성을 자동으로 인식할 수 있는 방법을 제안한다. 이때, 감성을 표현하기 위해 고바야시의 10가지 감성 그룹 - {romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modern}- 을 이용한다. 제안된 시스템은 특징 추출과 분류로 구성된다. 특징 추출 단계에서는 주관적인 감성을 물리적인 영상 특징으로 표현하기 위해 텍스타일을 구성하는 대표 컬러와 패턴을 추출 한다. 이 때 대표 컬러를 추출하기 위해서 양자화 기법을 이용하고, 패턴정보를 표현하기 위해서는 웨이블릿 변환 후의 통계적인 정보를 이용한다 추출된 컬러와 패턴 특징은 신경망을 이용한 분류기의 입력으로 사용되고, 분류기를 통해 입력 텍스타일이 임의의 감성을 가지는지 여부가 결정된다. 제안된 감성인식 방법의 효율성을 증명하기 위해서 인위적인 도메인, 패션 도메인, 인테리어 도메인에서 얻어진 389장의 텍스타일 영상에서 실험하였다. 다양한 도메인의 영상에 대해 사용된 결과 제안된 방법은 100%의 정확도와 99%의 재현율을 보였다. 이러한 실험 결과는 제안된 감성인식 방법이 다양한 텍스타일 관련 산업분야에 일반화되어 사용될 수 있음을 보여주었다.
영상 기반 항법은 GPS/INS 통합 항법 시스템의 취약점을 보강할 수 있는 보조 항법 기술로 비행체에서 촬영한 항공 영상과 기존의 데이터베이스를 비교하여 비행체의 위치를 구한다. 하지만 데이터베이스가 생성된 시점은 항공 영상 촬영 시점과 다를 수밖에 없으며, 이러한 시점 차이로 인해 두 영상 간의 다른 특징점들이 생성된다. 즉, 유사하지만 다른 두 영상이므로 일반적인 영상 대조 알고리즘을 항법 문제에 적용하기 힘들다. 따라서 본 논문에서는 인공지능 기법인 의미론적 분할을 활용하여 항공 영상에서 항법에 필요한 정보를 분류한 후 영상 대조를 수행하는 방법을 제안한다. 의미론적 분할로 시점 변화, 촬영 조건 변화가 있더라도 강건하게 두 영상이 정합 되도록 한다. 제안한 방법은 시뮬레이션과 비행 실험을 통해 성능을 확인하며, 일반적인 영상 대조 알고리즘을 이용하여 항법을 수행한 결과와 비교한다.
예상치 못한 장비들의 결함은 우리 사회 전반에 막대한 경제적 손실을 초래하고, 이런 상황에서 상태 모니터링은 해결 가능한 방법을 제시할 수 있다. 상태 모니터링은 부착된 다양한 센서 데이터로부터 기계 고장을 예측하기 위해 신호 처리 알고리즘의 개발이 요구된다. 상태 모니터링에 사용되는 신호 처리 알고리즘은 높은 계산 효율과 고해상도를 요구하고 있다. 무선 센서 네트워크상(WSN)에서 상태 모니터링을 개선하기 위해서 데이터의 시각화는 데이터의 특징적인 표현을 극대화할 수 있다. 따라서 본 논문은 대규모 기반 시설에서 장비의 환경 상태를 식별하기 위해 WSN 기반의 상태 모니터링을 위한 온도 데이터의 시각적인 특징 추출을 제안한다. 실험 결과, 시간-주파수 분석은 시간에 따른 온도 변화를 시각적으로 확인할 수 있으며 온도 데이터 변화의 특징을 추출하는데 용이하였다.
최근의 건축물은 복합적인 기능과 형태를 보이고 있으며, 크기가 거대해짐에 따라 구조물 건전성 감시(Structural Health Monitoring)기술의 수요 또한 증가하고 있다. 구조물마다 고유한 동특성을 가지고 있으며, 다양한 외력의 영향을 받기 때문에 구조물의 건전성을 평가하는 다양한 방법들이 연구되고 있다. 전문가에 의지하여 접근 가능한 지점에 대한 육안 검사 및 비파괴 검사를 벗어나 사각지대가 없는 온라인 계측 시스템의 구비와 함께 자동으로 위험요소를 검출하는 시스템이 요구되고 있다. 본 연구에서는 비선형적인 구조물의 응답을 고려하기 위해 관리도 기법, 평균제곱근편차, 일반 극치 분포 등과 같은 통계적 기법을 이용하여 이상거동을 판별에 활용할 수 있는 신호 특징 추출과 적응형 임계치 설정 알고리즘을 제안하였으며, 강제진동 실험과 실제 운용중에 있는 구조물의 지진 계측 시스템의 가속도 응답을 이용하여 성능을 검증하였다.
IT기술이 급속히 발달하고 스마트 기기의 개인보급이 늘어나면서 정보의 전달 매체로 시청각 자료 중에서도 특히 영상 자료가 많이 활용된다. 문헌정보서비스 콘텐츠로서 영상자료는 필수 요소가 되었으며, TV를 통한 단방향 전달, 인터넷을 통한 양방향 서비스, 도서관 시청각 자료 대출 등 다양한 방법으로 활용되고 있다. 특히 인터넷 환경에서 스마트 기기를 통한 영상서비스 관점에서 정보 제공자는 제공 정보에 대한 가공에 적은 노력과 비용을 들이고자 하고, 또한 사용자는 과도한 데이터 사용량에 대한 부담과 시간, 공간적인 제약으로 인해 원하는 부분만을 효율적으로 이용하고자 한다. 따라서 영상에 대한 내용을 유사한 부분끼리 자동으로 구분하고 요약, 색인하여 이용 편의성을 높일 필요가 있다. 본 논문에서는 교육용 어학 영상의 내용과 그 특성을 분석하여 영상을 이루는 샷을 자동으로 구분하고 비주얼 특징을 조합하여 어학 영상의 세분화된 내용 정보를 결정하고 색인하는 방법을 제안한다. 외국어 강의 영상을 이용한 실험에 의해 의미기반의 샷 결정에 높은 정확률을 보였으며, 교육용 어학 영상의 요약 서비스에 효율적으로 적용 가능함을 확인하였다.
In Korea, quality evaluation of dried oak mushrooms are done first by classifying them into more than 10 different categories based on the state of opening of the cap, surface pattern, and colors. And mushrooms of each category are further classified into 3 or 4 groups based on its shape and size, resulting into total 30 to 40 different grades. Quality evaluation and sorting based on the external visual features are usually done manually. Since visual features of mushroom affecting quality grades are distributed over the entire surface of the mushroom, both front (cap) and back (stem and gill) surfaces should be inspected thoroughly. In fact, it is almost impossible for human to inspect every mushroom, especially when they are fed continuously via conveyor. In this paper, considering real time on-line system implementation, image processing algorithms utilizing artificial neural network have been developed for the quality grading of a mushroom. The neural network based image processing utilized the raw gray value image of fed mushrooms captured by the camera without any complex image processing such as feature enhancement and extraction to identify the feeding state and to grade the quality of a mushroom. Developed algorithms were implemented to the prototype on-line grading and sorting system. The prototype was developed to simplify the system requirement and the overall mechanism. The system was composed of automatic devices for mushroom feeding and handling, a set of computer vision system with lighting chamber, one chip microprocessor based controller, and pneumatic actuators. The proposed grading scheme was tested using the prototype. Network training for the feeding state recognition and grading was done using static images. 200 samples (20 grade levels and 10 per each grade) were used for training. 300 samples (20 grade levels and 15 per each grade) were used to validate the trained network. By changing orientation of each sample, 600 data sets were made for the test and the trained network showed around 91 % of the grading accuracy. Though image processing itself required approximately less than 0.3 second depending on a mushroom, because of the actuating device and control response, average 0.6 to 0.7 second was required for grading and sorting of a mushroom resulting into the processing capability of 5,000/hr to 6,000/hr.
수동형(passive) 밀리미터파(millimeter wave) 영상은 의복 등에 은닉된 물체의 탐지가 가능하며 악천후의 상황에서도 감쇄도(attenuation)가 낮아 식별이 가능한 영상을 획득할 수 있다. 그러나 영상 시스템의 공간 해상도(spatial resolution)가 낮고 수신신호가 미약하여 잡음의 영향이 크고 시스템의 온도 분해능(temperature resolution)에 따라 영상의 질이 달라진다. 본 논문에서는 수동형 밀리미터파 영상과 일반 카메라부터 획득되는 영상의 정합(registration)과 은닉된 물체의 시각화를 위한 영상 융합(fusion)을 연구한다. 영상의 정합은 추출된 몸체 경계 간의 상호상관도를 최대로 하는 어파인 변환(affine transform)으로 수행되며 융합은 영상 분해를 위한 이산 웨이블릿 변환(discrete wavelet transform), 융합 법칙(fusion rule), 영상을 복원하기 위한 역 이산 웨이블릿 변환의 3단계로 구성된다. 실험에서는 수동형 밀리미터파 영상 시스템에 의해 칼, 도끼, 화장품, 그리고 휴대폰과 같은 또는 비금속의 다양한 물체가 탐지됨을 보인다. 또한 정합과 융합된 영상의 결과로부터 가시 영상으로부터 얻은 얼굴과 의복 등의 대상자의 신원정보와 밀리미터파 영상으로부터 획득한 은닉된 물체의 정보를 동시에 시각화할 수 있음을 보인다.
다중 모달리티 영상정합은 서로 다른 성격의 두 영상의 중요정보를 결합하여 복합적 정보를 얻기 위해 널리 사용되는 영상처리 기법이다. 본 연구에서는 정합 대상 객체의 초기위치 및 방향에 종속적이지 않고, 낮은 정합오차 범위 내에서의 안정적인 정합을 지원하기 위하여 기존의 표면기반 정합 기법을 개선한 모멘트 정보 및 표면거리 기반의 정합 기법을 제시한다. 제안방법에서는 우선 정합대상객체의 표면 윤곽 점을 추출하고, 이를 기반으로 대상객체의 모멘트 정보를 추출하여, 표면거리 기반 상세 정합 이전에 모멘트 정보를 일치시키는 변환을 수행함으로써, 정합이전 대상객체의 위치 및 방향이 상이한 경우에 있어서도 정합이 안정적으로 수행되도록 한다. 또한 테스트 영상에 대한 표면 대표점 추출 시, 표면 코너추출법을 적용함으로써, 기존 표면 정보 기반 정합기법에서 일반적으로 사용하고 있는 무작위 샘플링 및 일정간격 샘플링에 의한 취약점을 보완한다. 본 논문에서 제안기법의 검증을 위하여 뇌 부위 자기공명단층영상(MRI)과 양자 방출 단층 촬영 영상(PET)을 적용하고, 정합오류율과 정합결과에 대한 2,3차원 가시화 영상의 육안평가를 통하여 정확성 및 안정성 측면을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.