• Title/Summary/Keyword: Visual Evoked potential

Search Result 67, Processing Time 0.026 seconds

Visually evoked potential in children with mitochondrial respiratory chain defects (소아 사립체 질환에서 시각 유발전위검사의 유용성)

  • Song, Ji Eun;Kim, He Min;Lee, Sang-Chul;Park, Yoon-Gghil;Byeon, Suk-Ho;Lee, Young-Mock;Lee, Joon-Soo;Kim, Heung-Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.4
    • /
    • pp.471-475
    • /
    • 2009
  • Purpose : Mitochondrial disorders are a clinical entity characterized by diverse symptoms and signs of involvement of various systems. Furthermore, the disorders are known to show ophthalmologic manifestations as well as neurological findings. Visually evoked potential is a sensitive measure to check the integrity of the visual pathway. In this study, we have investigated the value of visually evoked potential in mitochondrial disorders with respiratory chain defects. Methods : Nineteen patients diagnosed with mitochondrial respiratory chain complex I defect as confirmed by spectrophotometric enzyme assay in muscle samples were enrolled for this study. The patients underwent a visually evoked potential study. We classified the results into four groups and compared these with clinical ophthalmologic findings. Results : Among the 19 patients, 14 showed abnormal visually evoked potential findings. Seven patients showed abnormal clinical ophthalmologic findings. All patients with abnormal ophthalmologic findings showed abnormal visually evoked potential findings. Among the 12 patients with normal ophthalmologic findings, seven showed abnormal results in visually evoked potential. Conclusion : Visually evoked potential study could be used as an effective screening tool for mitochondrial disorders to detect ophthalmologic and neurological abnormalities.

Robot Control based on Steady-State Visual Evoked Potential using Arduino and Emotiv Epoc (아두이노와 Emotiv Epoc을 이용한 정상상태시각유발전위 (SSVEP) 기반의 로봇 제어)

  • Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.254-259
    • /
    • 2015
  • In this paper, The wireless robot control system was proposed using Brain-computer interface(BCI) systems based on the steady-state visual evoked potential(SSVEP). Cross Power Spectral Density(CPSD) was used for analysis of electroencephalogram(EEG) and extraction of feature data. And Linear Discriminant Analysis(LDA) and Support Vector Machine(SVM) was used for patterns classification. We obtained the average classification rates of about 70% of each subject. Robot control was implemented using the results of classification of EEG and commanded using bluetooth communication for robot moving.

Measuring System of Visual Evoked Potential (VEP) in Mice using BioPAC Modules (BioPAC 모듈을 이용한 마우스 시각유발전위 측정 시스템 확립)

  • Lee, Wang Woo;Ahn, Jung Ryul;Goo, Yong Sook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • For the development of feasible retinal prosthesis, one of the important elements is acquiring proper judging tool if electrical stimulus leads to patient's visual perception. If evoked potential to electrical stimulus is recorded in primary visual (V1) cortex, it means that the stimulus effectively evokes visual perception. Therefore, in this study, we established VEP recording system on V1 cortex using BioPAC modules as the judging tool. And the measuring system was evaluated by recording VEP of mice. After anesthesia, normal mice (C57BL/6J strain; n = 6) were secured to stereotaxic apparatus (Harvard Apparatus, USA). For the recording of VEP, the stainless steel needle electrode (impedance: $2-5k{\Omega}$) was positioned on the surface of the cortex through the burr hole at 2.5 mm lateral and 4.6 mm caudal to bregma. DA 100C and EEG 100C BioPAC modules were used for the trigger signal and VEP recording, respectively. When left eye was blocked by black cover and right eye was stimulated by flash light using HMsERG (RetVet Corp, USA), VEP response at left V1 cortex was detected, but there was no response at right V1 cortex. Amplitudes and latencies of P2, N3 peaks of VEP recording varied according to the depths of the electrodes on V1 cortex. From the surface upto $600{\mu}m$ depth, amplitudes of P2 and N3 increased, while deeper than $600{\mu}m$, those amplitudes decreased. The deeper the insertion depth of the electrode, the latency of N1 peaks tends to be delayed. However, there was no statistically significant difference among the latencies of P2 and N3 peaks (P > 0.05, ANOVA). Our VEP recording data such as the insertion depth and the latency and amplitudes of peaks might be used as guidelines for electrically-evoked potential (EEP) recording experiment in near future.

EEG Current Source Imaging using VEP Data Recorded inside a 3.0T MRI Magnet

  • Han Jae Y.;Choi Young H.;Im Chang H.;Kim Tae-S.;Lee Soo Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.95-99
    • /
    • 2005
  • We have performed EEG current source imaging on the cortical surface using visual evoked potentials (VEPs) recorded inside a 3.0 T MRI magnet. In order to remove ballistocardiogram (BCG) artifacts in the VEPs, an improved BCG template subtraction technique is devised. Using the cortically constrained current source imaging technique and pattern-reversal visual stimulations, we have obtained current source maps from 10 subjects. To validate the EEG current source imaging inside the magnet, we have compared the current source maps to the ones obtained outside the magnet. The experimental results demonstrate that there is a strong correspondence between the current source maps, proving that current source imaging is feasible with the evoked potentials recorded inside a 3.0 T MRI magnet.

Principles of Intraoperative Neurophysiological Monitoring with Insertion and Removal of Electrodes (수술 중 신경계감시검사에서 검사에 따른 전극의 삽입 및 제거방법)

  • Lim, Sung Hyuk;Park, Soon Bu;Moon, Dae Young;Kim, Jong Sik;Choi, Young Doo;Park, Sang Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • Intraoperative neurophysiological monitoring (INM) examination identifies the damage caused to the nervous system during surgery. This method is applied in various surgeries to validate the procedure being performed, and proceed with confidence. The assessment is conducted in an operating room, using subdermal needle electrodes to optimize the examination. There are no textbooks or guides for the correct stimuli and recording areas for the surgical laboratory test. This article provides a detailed description of the correct stimuli and recording parts in motor evoked potential (MEP), somatosensory evoked potential (SSEP), brainstem auditory evoked potentials (BAEP) and visual evoked potentials (VEP). Free-running Electromyography (EMG) is an observation of the EMG that occurs in the muscle, wherein the functional state of most cranial nerves and spinal nerve roots is determined. In order to help understand the test, an image depicting the inserting subdermal needle electrodes into each of the muscles, is attached. Furthermore, considering both the patient and the examiner, a safe method is suggested for removal of electrodes after conclusion of the test.

The Center Locus Estimation of the Evoked Potential Distributions During Visual Stimulation in Human (시각 자극 동안의 유발성 전위분포 의 중심점 추적에 관한 연구)

  • Park, Gwang-Seok;Min, Byeong-Gu;Lee, Chung-Ung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.3
    • /
    • pp.6-12
    • /
    • 1983
  • The visual evoked potentials were measured using 19 electrodes attached to the scalp in 5 normal and 4 abnormal subjects during visual stimulation and these data were sampled for computer processing with 500 Hz sampling frequency. The center of potential distributions and its time-dependent locus were estimated from these potential distributions using weighting matrix which was determined by the electrodes' position coordinates. In normal subjects these estimated electrical signals were shown to propagate from the frontal lobe to the occipital lobe of the cortex following the known visual pathway. In abnormal subjects, there were significant differences in these estimated propagation pathway. The relationships among this model, the point source model and the dipole source model were analyzed.

  • PDF

Response State of EEG Wave Type on Visual Cortex According to Color Vision Target (색각 시표에 따른 시피질 뇌파의 반응 상태)

  • Kim, Douk Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.5-9
    • /
    • 2000
  • The visual evoked potential was electrophysiological method for the identify of the EEG response on visual cortex. This test was objective test method on the eye function. This study was used the visual evoked potential for the objective color test. The subjects was a normal color function in Korean adults. The test condition was performed on the differens distance and illumination. According to convergence condition of color vision target. On the appearance of EEG wave of visual stimulation on visual cortex. The most EEG wave style was delta wave, and the next amount wave form was beta wave and theta wave, and the least EEG wave form was alpha wave. The histogram of amplitude of EEG wave form was almost non-Gaussian shape, and the phase diagram of amplitude was almost all linear shape. On the kinds of color vision target, the frequency of EEG wave style appeared a similar results.

  • PDF

Evoked Potential Estimation using the Iterated Bispectrum and Correlation Analysis (Bispectrum 및 Correlation 을 이용한 뇌유발전위 검출)

  • Han, S.W.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.113-116
    • /
    • 1994
  • Estimation of the evoked potential using the iterated bispectrum and cross-correlation (IBC) has been tried for both simulation and real clinical data. Conventional time average (TA) method suffers from synchronization error when the latency time of the evoked potential is random, which results in poor SNR distortion in the estimation of EP waveform. Instead of EP signal average in time domain, bispectrum is used which is insensitive to time delay. The EP signal is recovered by the inverse transform of the Fourier amplitude and phase obtained from the bispectrum. The distribution of the latency time is calculated using cross-correlation between EP signal estimated by the bispectrum and the acquired signal. For the simulation. EEG noise was added to the known EP signal and the EP signal was estimated by both the conventional technique and bispectrum technique. The proposed bispectrum technique estimates EP signal more accurately than the conventional technique with respect to the maximum amplitude of a signal, full width at half maximum(FWHM). signal-to-noise-ratio, and the position of maximum peak. When applied to the real visual evoked potential(VEP) signal. bispectrum technique was able to estimate EP signal more distinctively. The distribution of the latency time may play an important role in medical diagonosis.

  • PDF

Extraction of evoked potentials using the shrinkage and averaging method of wavelet coefficients (웨이브렛 계수를 축소와 평균 가산에 의한 유발전위뇌파신호의 추출)

  • 이용희;이두수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.55-62
    • /
    • 1997
  • For the effective removal of artifacts and the extraction of an improved evoked potential response, we propose the averaging method usin gthe shrinkag eof wavelet coefficients. The wavelet analysis decomposes the measured evoked potentials into scale coefficients with low frequency components and wavelet coefficients with high ones as a resolution level, respectively. and in the course of synthesis evoked potentials, the presented method shrinks the wavelet coefficients, and then reproduces the evoked potentials, and lastly averages it. We measured visual evoked potentials to simulate the averaging method using the shrinkage of wavelet coefficients, and compared it with aveaged signal. As a result of simulations, the proposed method gets improved VEP about 0.2-1.6dB in comparison with the averaging method with daubechies wavelet in the resolution level four.

  • PDF

Enhancing Multiple Steady-State Visual Evoked Potential Responses Using Dual-frequency tACS (이중 주파수 tACS를 이용한 안정상태 시각 유발 전위 반응 향상)

  • Jeonghui Kim;Sang-Su Kim;Young-Jin Jung;Do-Won Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI) is one of the promising systems that can serve as an alternative input device due to its stable and fast performance. However, one of the major bottlenecks is that some individuals exhibit no or very low SSVEP responses to flickering stimulation, known as SSVEP illiteracy, resulting in low performance on SSVEP-BCIs. However, a lengthy duration is required to enhance multiple SSVEP responses using traditional single-frequency transcranial alternating current stimulation (tACS). This research proposes a novel approach using dual-frequency tACS (df-tACS) to potentially enhance SSVEP by targeting the two frequencies with the lowest signal-to-noise ratio (SNR) for each participant. Seven participants (five males, average age: 24.42) were exposed to flickering checkerboard stimuli at six frequencies to determine the weakest SNR frequencies. These frequencies were then simultaneously stimulated using df-tACS for 20 minutes, and the experiment was repeated to evaluate changes in SSVEP responses. The results showed that df-tACS effectively enhances the SNR at each targeted frequency, suggesting it can selectively improve target frequency responses. The study supports df-tACS as a more efficient solution for SSVEP illiteracy, proposing further exploration into multi-frequency tACS that could stimulate more than two frequencies, thereby expanding the potential of SSVEP-BCIs.