• Title/Summary/Keyword: Visual Distance

Search Result 736, Processing Time 0.032 seconds

A Study on Design and Implementation of Driver's Blind Spot Assist System Using CNN Technique (CNN 기법을 활용한 운전자 시선 사각지대 보조 시스템 설계 및 구현 연구)

  • Lim, Seung-Cheol;Go, Jae-Seung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • The Korea Highway Traffic Authority provides statistics that analyze the causes of traffic accidents that occurred since 2015 using the Traffic Accident Analysis System (TAAS). it was reported Through TAAS that the driver's forward carelessness was the main cause of traffic accidents in 2018. As statistics on the cause of traffic accidents, 51.2 percent used mobile phones and watched DMB while driving, 14 percent did not secure safe distance, and 3.6 percent violated their duty to protect pedestrians, representing a total of 68.8 percent. In this paper, we propose a system that has improved the advanced driver assistance system ADAS (Advanced Driver Assistance Systems) by utilizing CNN (Convolutional Neural Network) among the algorithms of Deep Learning. The proposed system learns a model that classifies the movement of the driver's face and eyes using Conv2D techniques which are mainly used for Image processing, while recognizing and detecting objects around the vehicle with cameras attached to the front of the vehicle to recognize the driving environment. Then, using the learned visual steering model and driving environment data, the hazard is classified and detected in three stages, depending on the driver's view and driving environment to assist the driver with the forward and blind spots.

A Real-Time Stereoscopic Image Conversion Method Based on A Single Frame (단일 프레임 기반의 실시간 입체 영상 변환 방법)

  • Jung Jae-Sung;Cho Hwa-Hyun;Choi Myung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, a real-time stereoscopic image conversion method using a single frame from a 2-D image is proposed. The Stereoscopic image is generated by creating depth map using vortical position information and parallax processing. For a real-time processing of stereoscopic conversion and reduction of hardware complexity, it uses image sampling, object segmentation by standardizing luminance and depth map generation by boundary scan. The proposed method offers realistic 3-D effect regardless of the direction, velocity and scene conversion of the 2-D image. It offers effective stereoscopic conversion using images suitable conditions assumed in this paper such as recorded image at long distance, landscape and panorama photo because it creates different depth sense using vertical position information from a single frame. The proposed method can be applied to still image because it uses a single frame from a 2-D image. The proposed method has been evaluated using visual test and APD for comparing the stereoscopic image of the proposed method with that of MTD. It is confirmed that stereoscopic images conversed by the proposed method offers 3-D effect regardless of the direction and velocity of the 2-D image.

Selective Skin Tone Reproduction using Preferred Skin Colors (선호 피부색을 사용한 선택적인 피부색 재현 기법)

  • Kim, Dae-Chul;Kyung, Wang-Jun;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.10-15
    • /
    • 2012
  • In a color image, people and especially facial patterns are important and interesting visual objects. Thus, effective skin color reproduction is essential, as skin color is a key memory color in color application systems. Previous studies suggested skin color reproduction by mapping only to the center value of preferred skin region. However, it is not suitable to determine one preference color because preference color from the observer's preference test is not dominant. In this paper, skin color reproduction using multiple preferred skin colors for each race is proposed. The proposed method first defines multiple preferred skin colors for each race according to their luminance level. After that, skin region is detected in an image. The race is then selected by calculating distance between average chromaticity of detected region and that of each racial skin from a database to assign preferred skin color for each race. Next, each corresponding preferred skin color is determined for each selected race. Finally, input skin color is proportionally mapped toward preferred skin color according to the difference between the input skin color and the preferred skin color for a smoothly reproduced skin color. In the experimental results, the proposed method gives better color correction on the objective and subjective evaluation than the previous methods.

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

Study on Close-Up Shots in Film (2015) (영화 <사도>(2015)의 클로즈업 쇼트 연구)

  • Lee, A-Young
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.609-621
    • /
    • 2016
  • A close-up shot, capturing all the fine details of an actor's face by filling up the frame, expresses an actor's performance more realistically than a stage where a living actor performs on. This is because a close-up generates an impact with its specific images and meanings seizing the attention of the audience and conjures up a psychological effect as if an actor's face is directly communicating with the audience at a minimum distance. Therefore, this study analyzed the film to examine the photographic effect and acting effect of close-up shots and recommend the need for acting training thereof. The film was selected since Song Kang-ho, to add more realism to his character acted going back and forth 20 years of age with a special makeup on face, his facial expressions, gestures, props in close-up successfully helped deliver the actor's performance by revealing the character's personality and emotions of the film, and generated an array of linguistic, visual and emotional meanings which are the key to film acting. This study is expected to contribute to helping actors to learn about the effect of close-ups and the key to film acting and find effective ways to express themselves in front of the camera.

Neutral point model of HVS for the Illuminant-adaptive White Balance Control of Displays (조명 적응 디스플레이 화이트 밸런스 조정을 위한 시각의 순응 화이트 모델)

  • Chae, Seok-Min;Lee, Sung-Hak;Lee, Myoung-Hwa;Sohng, Kyu-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.674-683
    • /
    • 2010
  • For the purpose of color reproduction under standard viewing conditions, recently, color display devices have developed for the colorimetric color reproduction. However the real viewing condition of color display devices is quite different from that. Therefore, it is very important for reproduced colors viewed under real conditions to match the color appearance under standard situations. There are various models that can be used to reproduce corresponding colors considering the chromatic adaptation of the human visual system. However neutral point or chromatic adaptation for the luminance level is not enough. In this paper, we propose a model that find adapting white points for the variations of the luminance levels under the same illuminant. This model is modeled by the proportion of Euclidian distance for luminance level. It is the adapting white function of the sigmoid type for surround luminance level. In the model, the optimal coefficients are obtained from the Hunt's experimental result. It is applied in the chromatic adaptation model using the neutral point of the various viewing conditions. And the neutral point can be used as the theoretical standard which determines the reference white of the color display devices.

A Study on the Visual Representation of TREC Text Documents in the Construction of Digital Library (디지털도서관 구축과정에서 TREC 텍스트 문서의 시각적 표현에 관한 연구)

  • Jeong, Ki-Tai;Park, Il-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.3
    • /
    • pp.1-14
    • /
    • 2004
  • Visualization of documents will help users when they do search similar documents. and all research in information retrieval addresses itself to the problem of a user with an information need facing a data source containing an acceptable solution to that need. In various contexts. adequate solutions to this problem have included alphabetized cubbyholes housing papyrus rolls. microfilm registers. card catalogs and inverted files coded onto discs. Many information retrieval systems rely on the use of a document surrogate. Though they might be surprise to discover it. nearly every information seeker uses an array of document surrogates. Summaries. tables of contents. abstracts. reviews, and MARC recordsthese are all document surrogates. That is, they stand infor a document allowing a user to make some decision regarding it. whether to retrieve a book from the stacks, whether to read an entire article, etc. In this paper another type of document surrogate is investigated using a grouping method of term list. lising Multidimensional Scaling Method (MDS) those surrogates are visualized on two-dimensional graph. The distances between dots on the two-dimensional graph can be represented as the similarity of the documents. More close the distance. more similar the documents.

Producing True Orthophoto Using Multi-Dimensional Spatial Information (다차원공간정보를 이용한 실감정사영상 제작 방안)

  • Lee, Hyun-Jik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.241-253
    • /
    • 2008
  • Recently, it is appearing that new paradigm of urban planning that ubiquitous concept such as the u-City, uECO-City is introduced while is rising necessity about third dimensional geo-spatial information of high quality for urban area. Orthophoto can manufacture by expense and time that is less easily than digital map using personal computer even if is not highly technician and according as position relation between manmade feature and natural feature is equal, can get information of distance, angle, horizontal and vertical position coordinate of topographic, area etc.. directly through orthophoto. Also, visual effect is good that orthophoto is expressed by image and interpretation is easy to detailed part of topographic. Manufacture and practical use are consisting in various field, for it is having advantage that can recognize information effectively than digital map. Therefore, this study presents a way of generating a detailed DSM for producing a true-orthphoto of the urban area, and this study also presents a way to produce an optimum true-orthophoto for an urban area by investigating through experiment the optimum variable for the geometric and radiometric correction of the orthophoto. This study also examined the potentials of the thesis by building a 3-dimensional city model of the model region with the above thesis on optimum generating method.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

Analysis of Individual Tree Change Using Aerial Photograph in Deforested area Before and After Road Construction (항공영상을 활용한 도로개발 전·후 산림 훼손지 개체목 분석)

  • Choi, Jae-Yong;Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Lee, Ji-Young;Choi, Won-Tae;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.65-73
    • /
    • 2018
  • Although the road construction in forest is increasing and there is a need for development ecological restoration on deforest area, no consideration has been given to individual trees in there. This study analyzed aerial photographs of deforest area before and after road construction for determining the degree of forest destruction by extracting individual trees. Study area was selected in the sites where are damaged by road construction in GongJu-si, YuSung-gu, and YeongDong-gun. The aerial photograph taken 1979 before construction is panchromatic image of 80cm in GSD (Ground Sample Distance) and other photograph taken 2016 after construction is multi-spectral image of 10cm in GSD. In order to minimize the difference of GSD, we conducted image re-sampling process for setting to same GSD for the two photographs. After that we carried out visual interpretation method for determining to change of individual tree. The result found that for GongJu-si of the number of individual tree was 1,014 in 1979 and 886 in 2016, which decreased by 128 (12.6%) and the average width of those decreased from 5.77m to 5.75m by 0.47%. In case of YoungDong-gun, the number of it was 761 in 1979 and 746 in 2016, which decreased by 2.0% and the average width of it decreased from 8.99mm to 8.90m by 1.1%. Lastly in case of YuSung-gu, the number of it was 1,578 in 1979 and 988 in 2016, which decreased by 37.4% and the average width of it decreased from 7.09m to 6.65m by 6.21%. these result imply that road construction causes destruction of forests. Since there are limitations such as errors due to researcher, it is necessary to construct a quantitative analysis method for the change of the deforest area. It is need to study the method of extracting individual tree in deforest area more accurately using high-resolution image of GSD 10cm or more as well. This study can be used as a basic data for the ecological restoration of the deforest area considering characteristics of individual tree such as height, diameter at breast height, and biomass.