최근 딥러닝(DL)은 여러 분야에서 급속도로 활용되고 있으며, 특히 영상으로부터 객체를 인식하여 분류하고 인식하기 위한 컴퓨터비전 분야에서 활발하게 연구가 진행되고 있다. 영상분야에서는 주로 합성곱 신경망(CNN)을 이용한 딥러닝 모델의 성능 향상에 주력하고 있다. 대부분의 합성곱 신경망은 영상을 학습시켜 영상분류 및 객체인식에 활용하고 있지만, 본 논문에서는 독일 사진측량, 원격탐사 및 공간정보학회(DGPF)가 구축하고 국제 사진측량 및 원격탐사학회(ISPRS)가 제공하는 데이터 셋 중에서 수치표면모델(DSM)과 이 데이터로부터 생성한 경사 및 주향 정보를 효율성과 성능이 우수하다고 평가받는 합성곱 신경망기반의 SegNet 모델에 적용하여 객체를 분류하고 분석하였다. 딥러닝은 고사양의 컴퓨터 시스템과 다량의 학습 데이터와 라벨 데이터가 필요하고, 다수의 시행착오에 의한 풍부한 경험이 요구된다. 또한 본 논문에서는 한정된 수량의 데이터로부터 효율적인 학습을 위한 데이터 생성 방법을 제시하고 수치표면모델을 분류하였다. 분석 결과 수치표면모델 데이터와 이로부터 도출한 부가적인 데이터를 딥러닝 모델에 적용해도 객체를 타당한 정확도로 분류할 수 있음을 확인하였다.
가로수는 도시 환경 개선을 위한 중요한 개체이다. 특히 도시 협곡에서 가로수 높이는 대기 오염물질의 제거에 큰 영향을 미치는 요소로써 높이를 정확히 측정해야할 필요가 있다. 본 연구에서는 수목의 높이 측정을 위해 대상지역의 무인항공기 영상을 정밀하게 보정하여 스테레오 영상 기반으로 수목의 높이를 추출하는 방식을 시도해보았다. 무인항공기의 영상 정렬은 공선방정식 기반의 SfM(Structure from motion) 방식을 적용하였으며 보정된 영상을 수치도화기에 적용하여 도시 협곡지역의 가로수 높이를 측정하였다. 가로수와 인접 건물의 높이를 함께 취득하였으며 정확한 지물의 높이 계산을 위해 도로면의 평균높이를 함께 산출하여 처리하였다. 그 결과로 수목의 높이 측정 및 건물과의 상대적인 높이값 차이 산출을 수치도화기를 이용한 육안 분석을 통해서 빠르게 할 수 있음을 확인하였다. 이는 무인항공기를 이용하여 별도의 3차원 포인트 클라우드를 제작하지 않고도 건물과 수목의 상대적인 높이 차이를 산출할 수 있음을 의미한다. 또한 비전문가도 활용할 수 있다는 장점이 있다. 향후 사용자가 영상 내 수목이나 건물의 한 지점을 선택하면 자동으로 해당 개체의 높이값을 추출하는 연구 및 영상에서 자동으로 수목을 추출한 뒤 수고가 함께 취득되는 연구가 수행되어야 하며, 이러한 기술의 개발 및 연구는 이후 도심지내 환경 정책 및 가로수 등의 현황파악에 도움이 될 수 있을 것으로 기대된다.
최근 목재산업계에서는 사람의 시각을 대체하는 기계시각을 이용한 화상처리시스템을 도입하여 제재목 등급 판정의 자동화, 제품의 품질향상 및 재단 최적화 등에 활용하고 있다. 본 연구에서는 국내산 소나무 제재목을 대상으로 표면결함검출을 위한 화상처리시스템을 개발하고자 하였으며, 주로 이용되고 있는 라인스캔카메라를 대신하여 비교적 저가의 영역카메라를 이용하였을 때 발생되는 문제점을 해결하고자 하였다. 벨트컨베이어의 불균일한 이송속도에 따른 문제점을 해결하기 위해 화상의 특징점을 이용한 결과 효과적인 화상병합을 할 수 있었다. 일반적인 영역카메라는 송재속도 15.7 m/min 이상에서는 모션블러에 의한 화상의 품질저하로 인하여 화상처리가 어려웠고 화상처리에 적합한 송재속도는 13.8 m/min였으며 추후 송재속도를 향상시키기 위해서는 전자셔터 속도가 빠른 카메라의 사용이 요구되었다. 녹색 컨베이어벨트상의 제재목 화상의 배경과의 분리를 위해서는 RGB필터의 red 채널을 이용하면 효과적이었다. 옹이검출을 위한 문턱값 판정법은 화상분석형인 문턱값 감소법이 우수하였으며 히스토그램분석형 중에서는 엔트로피법이 적합하였다.
컴퓨터 비전 기술이 위성영상에 적용되면서, 최근 들어 딥러닝 영상인식을 이용한 구름 탐지가 관심을 끌고 있다. 본연구에서는 SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset과 영상자료증대 기법을 활용하여 U-Net 구름탐지 모델링을 수행하고, 10폴드 교차검증을 통해 객관적인 정확도 평가를 수행하였다. 512×512 화소로 구성된 1800장의 학습자료에 대한 암맹평가 결과, Accuracy 0.821, Precision 0.847, Recall 0.821, F1-score 0.831, IoU (Intersection over Union) 0.723의 비교적 높은 정확도를 나타냈다. 그러나 구름그림자 중 14.5%, 구름 중 19.7% 정도가 땅으로 잘못 예측되기도 했는데, 이는 학습자료의 양과 질을 보다 더 향상시킴으로써 개선 가능할 것으로 보인다. 또한 최근 각광받고 있는 DeepLab V3+ 모델이나 NAS(Neural Architecture Search) 최적화 기법을 통해 차세대중형위성 1, 2, 4호 등의 구름탐지에 활용 가능할 것으로 기대한다.
본 연구는 분류(classification)기반 딥러닝 모델(deep learning model)인 Inception과 SENet을 결합한 SE-Inception을 활용하여 수종분류를 수행하고 분류정확도를 평가하였다. 데이터세트의 입력 이미지는 Worldview-3와 GeoEye-1 영상을 활용하였으며, 입력 이미지의 크기는 10 × 10 m, 30 × 30 m, 50 × 50 m로 분할하여 수종 분류정확도를 비교·평가하였다. 라벨(label)자료는 분할된 영상을 시각적으로 해석하여 5개의 수종(소나무, 잣나무, 낙엽송, 전나무, 참나무류)으로 구분한 후, 수동으로 라벨링 작업을 수행하였다. 데이터세트는 총 2,429개의 이미지를 구축하였으며, 그중약 85%는 학습자료로, 약 15%는 검증자료로 활용하였다. 딥러닝 모델을 활용한 수종분류 결과, Worldview-3 영상을 활용하였을 때 최대 약 78%의 전체 정확도를 달성하였으며, GeoEye-1영상을 활용할 때 최대 약 84%의 정확도를 보여 수종분류에 우수한 성능을 보였다. 특히, 참나무류는 입력 이미지크기에 관계없이 F1은 약 85% 이상의 높은 정확도를 보였으나, 소나무, 잣나무와 같이 분광특성이 유사한 수종은 오분류가 다수 발생하였다. 특정 수종에서 위성영상의 분광정보 만으로는 특징량 추출에 한계가 있을 수 있으며, 식생지수, Gray-Level Co-occurrence Matrix (GLCM) 등 다양한 패턴정보가 포함된 이미지를 활용한다면 분류 정확도를 개선할 수 있을 것으로 판단된다.
유출유는 해양 생태계에 큰 위협이 되므로 피해 최소화를 위해 신속한 현황정보파악이 필요하다. 위성원격탐사는 항공기에 비해 광역적 모니터링이 가능하기 때문에 시공간적 범위에서 장점을 가진다. 최근에는 딥러닝 영상인식 기술의 발전으로 인해 딥러닝을 활용한 유출유 탐지의 필요성이 대두되고 있으나, 기존의 Synthetic Aperture Radar (SAR) 영상 위주의 유출유 탐지와는 달리 고해상도 광학영상에 딥러닝 기법을 적용하는 경우는 많지 않았다. 이에, 본 연구에서는 PlanetScope 위성의 광학영상을 활용하여 유출유 레이블을 제작하고, 이를 기반으로 DeepLabV3+모델을 활용하여 유출유 탐지 모델을 구축하였으며, 암맹평가에서 정확도 0.885, 정밀도 0.888, 재현율 0.886, F1점수 0.883, 평균 교집합 대 합집합 비율(Mean Intersection over Union, mIOU) 0.793 등의 상당히 높은 정확도를 나타냈다.
Meta에서 신속한 영상 분할 기능을 제공하는 대규모 컴퓨터 비전 생성 모델을 발표한 이후, 여러 활용 분야에서 이를 적용하려는 연구가 이루어지고 있다. 이 연구에서는 위성 영상 자료에 Segment Anything Model (SAM)을 사용할 수 있는 QGIS 플러그인 Geo-SAM을 사용하여 수체 객체 탐지와 추출에 대한 SAM의 적용성을 조사해 보고자 하였다. 실험 대상 자료는 국토위성(Compact Advanced Satellite 500, CAS500-1) 영상을 사용하였다. 이 자료를 가지고 SAM을 적용하여 얻은 결과는 같은 입력 영상으로부터 수작업으로 제작한 수체 객체 자료, Open Street Map (OSM)의 수체 자료, 국토지리정보원의 수계 수치지도와 비교하였다. SAM 처리 결과와 비교 대상 자료를 이용하여 추출된 모든 객체를 대상으로 계산한 경계사각형의 교집합/합집합의 평균값을 나타내는 mean Intersection over Union (mIoU)은 각각 0.7490, 0.5905, 0.4921로 나타났고, 각 자료에서 공통으로 나타나거나 추출된 객체에 대해 계산한 결과는 차례대로 0.9189, 0.8779, 0.7715로 나타났다. SAM을 적용한 결과와 다른 비교 자료와의 공간적 일치도를 분석한 결과, SAM에서는 한 개의 수체 객체를 여러 개의 분할 요소로 나타내므로 수체 객체 분류를 지원하는 의미 있는 결과를 보이고 있음을 알 수 있다.
Background: Posture balance control is the ability to maintain the body's center of gravity in the minimal postural sway state on a supportive surface. This ability is obtained through a complicated process of sensing the movements of the human body through sensory organs and then integrating the information into the central nervous system and reacting to the musculoskeletal system and the support action of the musculoskeletal system. Motor function, including coordination, motor, and vision, vestibular sense, and sensory function, including proprioception, should act in an integrated way. However, more than half of stroke patients have motor, sensory, cognitive, and emotional disorders for a long time. Motor and sensory disorders cause the greatest difficulty in postural control among stroke patients. Objects: The purpose of this study is to determine the effect of visual and somatosensory information on postural sway in stroke patients and carrying out a kinematic analysis using a tri-axial accelerometer and a quantitative assessment. Methods: Thirty-four subjects posed four stance condition was accepted various sensory information for counterbalance. This experiment referred to the computerized dynamic posturography assessments and was redesigned four condition blocking visual and somatosensory information. To measure the postural sway of the subjects' trunk, a wireless tri-axial accelerometer was used by signal vector magnitude value. Ony-way measure analysis of variance was performed among four condition. Results: There were significant differences when somatosensory information input blocked (p<.05). Conclusion: The sensory significantly affecting the balance ability of stroke patients is somatosensory, and the amount of actual movement of the trunk could be objectively compared and analyzed through quantitative figures using a tri-axial accelerometer for balance ability.
Thermal infrared cameras have been conducted actively in various application areas, such as military, medical service, industries and cars. Because of their characteristic of sensing the radiant heat emitted from subjects in the range of long-wavelength($3{\sim}5{\mu}m$ or $8{\sim}12{\mu}m$), and of materializing a vision system, when general optics materials are used, they don't react to the light in the range of long-wavelength, and can't display their optic functions. Therefore, the materials with the feature of higher refractive index, reacting to the range of long-wavelength, are to be used. The kinds of materials with the characteristic of higher refractive index are limited, and their features are close to those of metals. Because of these metallic features, the existing producing method of optical systems were direct manufacturing method using grinding method or CAD/CAM, which put limit on productivity and made it difficult to properly cope with the increasing demand of markets. GASIR, a material, which can be molded easily, was selected among infrared ray optics materials in this study, and the optical system was designed with two Aspheric lenses. Because the lenses are molded in the environment of high temperature and high pressure, they require a special metallic pattern. The metallic pattern was produced with materials with ultra hardness that can stand high temperature and high pressure. As for the lens mold, GMP(Glass Molding Press) of the linear transfer method was used in order to improve the productivity of optical systems for thermal infrared cameras, which was the goal of this paper.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.516-516
/
2002
With the wide usage of LiDAR data and high-resolution satellite image, 3D modeling of buildings in urban areas has become an important research topic in the photogrammetry and computer vision field for many years. However the previous modeling has its limitations of merely texturing the image to the DSM surface of the study area and does not represent the relief of building surfaces. This study is focused on presenting a system of realistic 3D building modeling from consecutive stereo image sequences using digital camera. Generally when acquiring images through camera, various parameters such as zooming, focus, and attitude are necessary to extract accurate results, which in certain cases, some parameters have to be rectified. It is, however, not always possible or practical to precisely estimate or rectify the information of camera positions or attitudes. In this research, we constructed the collinearity condition of stereo images through extracting the distinctive points from stereo image sequence. In addition, we executed image matching with Graph Cut method, which has a very high accuracy. This system successfully performed the realistic modeling of building with a good visual quality. From the study, we concluded that 3D building modeling of city area could be acquired more realistically.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.