• 제목/요약/키워드: Visible Wavelength Radiation

검색결과 37건 처리시간 0.024초

국내 종합일사량의 성분분석 (Analysis of Total Radiation Components in Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.67.1-67.1
    • /
    • 2011
  • Knowledge of the solar radiation components and classified wavelength are essential for modeling many solar energy systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating solar systems, it is necessary to know the intensity of the beam radiation, as only this components can be concentrated, and The new solar system can generate electricity from ultraviolet and infrared light as well as visible light. The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating solar system users or designers as well as by research institutes.

  • PDF

국내 태양광자원의 성분 및 파장별 분석에 관한 연구 (A Study on the Solar Radiation Analysis for Components and Classified Wavelength in Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.35-41
    • /
    • 2012
  • Knowledge of the solar radiation components and classified wavelength data are essential for modeling many solar photovoltaic systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating PV systems, it is necessary to know the intensity of the beam radiation, as only this components can be concentrated, and The new PV cell can generate electricity from ultraviolet and infrared light as well as visible light. The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating PV system users or designers as well as by research institutes. It is essential to utilize the solar radiation data as application and development of solar energy system increase. Consider able efforts have been made constructing a standard data base system from measure data.

모의 생체조직의 표면온도 조건에 따른 근육이완 특성에 관한 연구 (A Study on the Characteristics of Muscle Relaxation according to the Temperature Condition at the Surface of Imitational Biological Tissue)

  • 고동국;이찬우;김민수
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.770-775
    • /
    • 2018
  • In this study, the characteristics of muscle relaxation were analyzed by the experimental and numerical method. A skin tissue was produced by imitational biological tissue using the agar powder, saline solution and sugar. The tissue was exposed to three types of wavelength-blue visible radiation(410 nm), red visible radiation(635 nm), and infrared ray(830 nm). The temperature results along the depth of tissue were measured according to the variation of light wavelength and irradiation time. The temperature change of the tissue shown up similar pattern regardless of the light wavelength kinds. The wavelength of infrared ray penetrated strongly into tissue between 3.2 mm and 11.4 mm. Also, the temperature change with the irradiation time was small, and the temperature value of the infrared ray was the largest. As a result, the muscle relaxation will occur mainly at the infrared wavelength.

THE EFFECT OF ATMOSPHERIC SCATTERING AS INFERRED FROM THE ROCKET-BORNE UV RADIOMETER MEASUREMENTS

  • Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.87-93
    • /
    • 1997
  • Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR)-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25km where the signals are not perturbed by atmospheric scattering effects.

  • PDF

효모세포의 자외선조해효과에 대한 각종 파장 광선의 작용 (Action of various wavelengths of visible light on U.V.-radiation damage to yeast cells.)

  • 이민재;이광웅
    • 미생물학회지
    • /
    • 제6권4호
    • /
    • pp.122-130
    • /
    • 1968
  • Action of various wavelengths of visible light on ultraviolet-radiation damage to haploid yeast cells, Saccharomyces cerevisiae 23971, was studied. The results were obtained on the basis of the survival and respiration rates by pre- and post-illuminations of various wavelengths before and after U.V.-irradiations on the yeast cells. Among the wavelengths tested, 635 $m{\mu}$, 429 $m{\mu}$ and white light which caused increase of respiration in pre-treatment alone, induced less resistance to the U. V.-damage than in the control, in both pre- and U.V.-treatment. On the contrary, such wavelengths as 574 $m{\mu}$and 530 $m{\mu}$, showing a weak effect on respiration in pre-treatment increased the susceptability to U.V.-radiation. Photoinactivation was generally obtained by both pre- and post- illuminations along with U.V.-treatment. At 635 $m{\mu}$ the PI rate was the lowest and also a low PI rate was shown at 429 $m{\mu}$. But 429 $m{\mu}$, in the post-treatment of the yeast cells pre-treated by the white light and the darkness respectively, showed the highest PI rate. In both pre- and post- treatment of 574, 530 and 473 $m{\mu}$,the PI rates were high to the same degree. Post-treatments of the wavelengths on U.V.-treated yeasts incubated rather under the white light than the darkness induced lower PI rate. It is assumed that there are great differences in action even of the same wavelength, depending upon the various combination of pre- and post-treatments, and that, moreover, the action of various wavelengths of visible light on U.V.-damage on the cells are concerned with the doses and dose rates of U.V. and visible lights. These observations led to an interpretation that each wavelength of visible light might exert distinctively different effects oil U. V.-damage, mainly causing the inhibition or stimulation of enzymes in the yeast cells.

  • PDF

태양 복사와 가시광선 복사 및 지구 복사와 적외선 복사의 관계에 대한 고등학생들의 인식 (High School Student Perception of the Relationships between Solar and Visible Radiation and between Terrestrial and Infrared Radiation)

  • 이종진;서은경;안유민
    • 한국지구과학회지
    • /
    • 제43권2호
    • /
    • pp.312-323
    • /
    • 2022
  • 이 연구는 '태양 복사'가 '가시광선 복사'로, '지구 복사'가 '적외선 복사'로 상호 대체될 수 있는 개념인가에 대한 문제 인식에서 출발하였다. 이를 위해 각 개념을 어떻게 인식하고 있는지를 드러낼 수 있는 질문지를 통하여 지구과학 I을 이수한 고등학생들의 인식을 조사하고, 이들의 인식에 영향을 미칠 수 있는 교과서의 서술 및 삽화를 분석하였다. 이 연구의 주요 결과는 다음과 같다. 첫째, 조사에 참여한 학생들은 모두 태양 복사를 가시광선 영역에서만 방출되는 복사로 인식하고 있으며, 지구 열수지에서 대류·전도·숨은열을 복사에 의한 에너지 전달로 인식하고 있는 학생들도 약 35%로 나타났다. 둘째, 2015 개정 교육과정의 지구과학 I 6종 교과서를 분석한 결과, 2종에서는 '단파 복사'와 '장파 복사'라는 용어를 도입하지만 이들에 대한 설명이 없었으며, 다른 2종에서는 태양 복사를 각각 '주로 가시광선 형태의 복사' 또는 '파장이 짧은 가시광선 복사'로 서술하였다. 그 밖의 2종 교과서에 있는 태양 복사와 지구 복사에 관하여, 파장 영역에 대한 설명이 없거나 '단파장/장파장'이라는 모호한 용어가 사용되었다. 아울러 2종의 교과서에서 열수지 삽화에 일부 오류가 발견되었다. 따라서 교과서들이 단파 복사와 장파 복사에 관한 정확한 용어 정의 없이 태양 복사와 지구 복사를 설명함에 따라 학습자들은 태양 복사와 지구 복사를 각각 가시광선 복사와 적외선 복사라는 개념으로 인식할 개연성이 있다. 이를 종합해 보면, 교과서에 기술된 불분명한 진술이나 오류가 학생들의 오개념을 유발하거나 재생산할 수 있음을 함의한다. 이 연구에서 논의된 바가 지구의 열수지와 복사 평형에 대한 교수·학습 과정의 유용한 참고 자료로 활용되고, 추후 교과서 집필에서도 합리적인 서술 방안을 제안하는 데 기여할 수 있으리라 기대한다.

Production of clothes for beach volleyball players: Safe against ultraviolet radiation damage

  • He Huang
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.627-637
    • /
    • 2023
  • Volleyball is an international sport with many fans. This sport has made significant progress in schools and clubs. Volleyball is suitable for all age groups and can be used in different environments. It has many social and physical benefits. During the game provides special physical training for the players and is considered one of the most exciting games. Another type of volleyball is beach volleyball, a beach sport and one of the Olympic sports held on the sand with the same rules as volleyball. This sport is usually played in coastal areas, especially with wide sandy beaches. Because this sport is played in open spaces, the players stay in this space for a long time and are exposed to dangerous ultraviolet radiation. It is a wavelength of light in the range of electromagnetic waves with a wavelength between 10 and 400 nm. This wavelength is shorter than visible light and more protracted than X-ray. Ultraviolet (UV) rays are naturally present in sunlight and include about 10% of all waves emitted from the sun's surface. Prolonged exposure to ultraviolet light causes acute and chronic damage to the skin and vision and even destroys the entire immune system. Different covers of the earth's surface reflect different amounts of UV rays. For example, snow cover, sand, and seawater surface reflect this radiation. Therefore, the health of volleyball players is in danger due to this harmful radiation. This work aims to introduce a type of clothing made of nanoparticles that can repel ultraviolet rays and protect beach volleyball players whose health is at risk from this radiation.

Effect of UV Radiation on Early Growth of Korean Rice Cultivars(Oryza sativa L.)

  • Choi, Kwan-Sam;In, Jun-Gyo;Kang, Si-Yong;Bae, Chang-Hyu;Lee, Hyo-Yeon
    • 한국작물학회지
    • /
    • 제44권3호
    • /
    • pp.296-301
    • /
    • 1999
  • The concerns on the crop damage by ultraviolet (UV) radiations is increasing owing to the decrease of their absorbing stratospheric ozone in the tropospheric. Cultivar differences on early growth of UV radiation among five Korean rice cultivars, four japonica types and one Tongil type (indica-japonica cross hybrid), were studied. Pot-seeded rice plants were grown under four different radiation conditions, i.e., visible radiation only, visible radiation with supplemented with high or low dose of UV-B (280~320 nm in wavelength) and UV-C (less than 280 nm in wavelength). The inhibitory degree on plant height, shoot and root weight and length of leaf blade and leaf sheath were determined at 40 days after seeding. UV-C showed the most severe inhibitory effect on the degree of biomass gain and leaf growth in most cultivars examined, followed by high UV-B and low UV-B. Among the cultivars used, the Kuemobyeo was the most sensitive cultivar and had not repair or showed resistance ability to continued irradiation of UV radiation. However, Janganbyeo and Jaekeon showed different responses that the elongation of leaf blades was promoted on 2nd and 3rd leaves and inhibited on 4th and 5th leaves but this inhibitory degree was reduced on 6 th and 7th leaves. Such tendency on leaf growth means that both cultivars had low sensitivity and most resistant ability to continued irradiation of UV radiation. While Tongil showed different response to enhanced UV radiation, ie., low UV-B promoted leaf growth but the inhibitory was severely increased by continued irradiation of high UV-B and UV-C, which means that Tongil had high threshold of UV radiation for response as an inhibitory light of plant growth. The results of this study indicate that the differences on sensitivity or resistant to the effects of UV radiation were existed among Korean rice cultivars.

  • PDF

불투명 수지재료의 복사에너지에 의한 변색 측정 (Measurement of Color Change of Opaque Resin Materials by Radiation Energy)

  • 한종성;김홍범;김훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1998년도 학술발표회논문집
    • /
    • pp.138-141
    • /
    • 1998
  • To evaluate the color change of the opaque resin materials, a measuring system including PAS(photodegradation acceleration system) was constructed. Xenon lamp is used as a light source in the PAS, and the radiant energy from the lamp is irradiated to the samples through serveral high-pass filters with cut-off wavelength in UV and visible region. The color difference of the samples were measured by using the measuring system with a spectrophotometer(CM-2002) and a computer. The result showed that the opaque resin materials changed severely in their color in the wavelength of UV region and changed a little in the wavelength of visible region.

  • PDF

자외선 및 가시광선에 의한 염색시료의 변퇴색 (Color Change of the Dyed Materials by Ultra-Violet and Visible Irradiation)

  • 김홍범;한종성
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1995년도 추계학술발표회논문집
    • /
    • pp.13-18
    • /
    • 1995
  • To evaluate the color change of the dyed materials by ultraviolet and visible rays in the museum, a system that accelerates dye fading was developed. Radiation energy from a Xenon lamp is irradiated on the samples through the filters of defferent cut-on wavelengths. As a result, the color change as a function of the wavelength and irradiation is calculated.

  • PDF