• Title/Summary/Keyword: Viscous Fluid

Search Result 569, Processing Time 0.033 seconds

Simulation of the Electrical Response of Charged Particles in the Fluid for Horizontal Switching Electrophoretic Cell

  • Yeo, Jun-Ho;Kim, Sang-Won;Lee, Gi-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.498-501
    • /
    • 2009
  • Electrophoretic displays (EPDs) are attracting considerable attentions as a paper-like display. Especially, Electrophoretic cell consists of micron-sized, charged particles dispersed in a viscous fluid. When an external electric field is applied, the charged particles move with a speed proportional to the particle mobility and the local field strength. In electrophoretic displays fast switching times are required, so knowing the particle mobility is very important. In this paper, we study a novel simulation for calculating the particle motions submerged in a viscous fluid for horizontal switching electrophoretic cell.

  • PDF

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Ryu, B.J.;Jung, S.H.;Shin, G.B.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.465-468
    • /
    • 2005
  • The paper deals with the influences of external damping and tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

  • PDF

SORET AND DUFOUR EFFECTS ON RADIATIVE HYDROMAGNETIC FLOW OF A CHEMICALLY REACTING FLUID OVER AN EXPONENTIALLY ACCELERATED INCLINED POROUS PLATE IN PRESENCE OF HEAT ABSORPTION AND VISCOUS DISSIPATION

  • VENKATESWARLU, M.;BHASKAR, P.;LAKSHMI, D. VENKATA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.157-178
    • /
    • 2019
  • The present correspondence is conveyed on to consider the fascinating and novel characteristics of radiative hydromagnetic convective flow of a chemically reacting fluid over an exponentially accelerated inclined porous plate. Exact solutions for the fluid velocity, temperature and species concentration, under Boussinesq approximation, are obtained in closed form by the two term perturbation technique. The interesting parts of thermal dispersing outcomes are accounted in this correspondence. Graphical evaluation is appeared to depict the trademark direct of introduced parameters on non dimensional velocity, temperature and concentration profiles. Also, the numerical assortment for skin friction coefficient, Nusselt number and Sherwood number is examined through tables. The certification of current examination is confirmed by making an examination with past revelations available in composing, which sets a benchmark for utilization of computational approach.

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.

The influence of the initial strains of the highly elastic plate on the forced vibration of the hydro-elastic system consisting of this plate, compressible viscous fluid, and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.;Aliyev, Soltan A.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.439-464
    • /
    • 2017
  • The hydro-elastic system consisting of a pre-stretched highly elastic plate, compressible Newtonian viscous fluid, and the rigid wall is considered and it is assumed that on the plate a lineal-located time-harmonic force acts. It is required to investigate the dynamic behavior of this system and determine how the problem parameters and especially the pre-straining of the plate acts on this behavior. The elasticity relations of the plate are described through the harmonic potential and linearized (with respect to perturbations caused by external time-harmonic force) form of these relations is used in the present investigation. The plane-strain state in the plate is considered and the motion of that is described within the scope of the three-dimensional linearized equations of elastic waves in elastic bodies with initial stresses. The motion of the fluid is described by the linearized Navier-Stokes equations and it is considered the plane-parallel flow of this fluid. The Fourier transform with respect to the space coordinate is applied for a solution to the corresponding boundary-value problem. Numerical results on the frequency response of the interface normal stress and normal velocity and the influence of the initial stretching of the plate on this response are presented and discussed. In particular, it is established that the initial stretching of the plate can decrease significantly the absolute values of the aforementioned quantities.

Pump Performance Analyses with High Viscous Fluids (점성이 높은 유체를 사용하는 펌프의 성능해석)

  • Kim, Dong-Joo;Roh, Hyung-Woon;Suh, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.21-26
    • /
    • 2004
  • In this study the effects of fluid viscosity on the pump performances for a conventional centrifugal pump were experimentally investigated. The study aimed to compare the pump characteristics between water and viscosity fluids. In order to measure the flow rate and pressure, v-notch welt and bourdon pressure gauges were used for the codes of KS B6301 and KS B6302. The working fluids were water, aqueous sugar and glycerin solutions. The results were summarized as follows : The experimental results were summarized as follows : the pump characteristics of the total head, shaft power, and efficiency with high viscosity fluids were different from those of water. When the viscosity of the applied fluid was increased, the total head and efficiency were more decreased than those of water. The decreasing gradients of the total head and the efficiency were larger than water due to the increased disk friction losses at the duty operation point. However, the shut-off head was almost constant regardless the viscosity of applied fluids. Each efficiency curves for the sugar $20w\%$ and glycerin $20w\%$ solutions was decreased up to $15.1\%$ and $34.4\%$ than that of water, respectively.

THD Analysis of a Hydraulic Servo Valve Using CFD (CFD를 이용한 유압 서보밸브의 열유체 해석)

  • Jeong, Y.H.;Park, T.J.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • Hydraulic servo valves are widely used in various fluid power systems because of their fast response and precision control. In this paper, we studied the effect of metering notch shapes and amount of their openings on the flow characteristics within the spool valve using a computational fluid dynamic (CFD) code, FLUENT. To obtain the results for more realistic operating conditions, viscous heating due to the jet flow and viscosity variation of the hydraulic fluid with temperature were considered. For two types of notch shape, streamlines, oil temperature and viscosity distributions, and variations of flow and friction forces acting on spool were showed. The flow and friction forces affected by the metering notch shapes and their openings, and oil temperature rise near metering notch was significant enough to results in the jamming phenomenon. A thermohydrodynamic (THD) flow analysis adopted in this paper can be used in optimum design of hydraulic servo valves.

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

Viscous Flow Analysis around a Blade Section by a Hybrid Scheme Combining a Panel Method and a CFD Method (패널법과 전산유동해석법의 결합을 이용한 날개단면 주위 점성유동 해석)

  • Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.355-363
    • /
    • 2013
  • Panel methods are essential tools for analyzing a fluid-flow problem around complex three dimensional bodies, but they lack ability to solve viscous effects. On the other hand, CFD methods are considered as powerful tools for analyzing fluid-flow characteristics including viscosity. However, they also have short falls, requiring more computing time and showing different results depending on the selection of turbulence models and grid systems. In this paper a hybrid scheme combining a panel method and a CFD method is suggested. The scheme adopts a panel method for far-field solution where viscous effects are negligible and a CFD method for the solution of RANS equations in near-field where viscous effects are relatively strong. The intermediate region between the far-field and near-field is introduced where the calculated field point velocities by the panel method are given as boundary velocities for the CFD method. To verify the scheme, calculated results, by a panel method, a CFD method and the hybrid scheme, for a two dimensional foil section are compared. The suggested hybrid scheme gives reasonable results, while computation time and memory can be dramatically reduced. By using the hybrid scheme efforts can be concentrated for the local flow near the leading and trailing edges, by providing more dense grid system, where detailed flow characteristics are required.