• Title/Summary/Keyword: Viscous Flow

Search Result 976, Processing Time 0.026 seconds

원심압축기 내부유동의 점성 3차원 해석 (Computational Analysis of 3-Dimensional Viscous Flow within Centrifugal Compressors)

  • 박무룡;최범석;윤의수
    • 연구논문집
    • /
    • 통권24호
    • /
    • pp.107-117
    • /
    • 1994
  • In aerodynamic design of centrifugal compressors, impellers are designed through preliminary design and blade profile generation. In order to find out faults of the initially designed impellers, the detailed informations about internal flow phenomena such as pressure distribution, flow separation, blade loading, etc are essential. These informations can be acquired with flow measurements or computational flow analyses. In this study, we calculated 3-D viscous flow in 4 back-swept impellers which were designed in our laboratory, and analyzed the flow characteristics which influence the performance of impellers.

  • PDF

A Numerical Investigation of Flow and Performance Characteristics of a Small Propeller Fan Using Viscous Flow Calculations

  • Oh, Keon-Je;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.386-394
    • /
    • 2002
  • The present work is aimed at investigating an unusual variation in flow and performance characteristics of a small propeller fan at low flow rates. A performance test of the fan showed dual performance characteristics, i.e., radial type characteristics at low flow rates and axial type at high flow rates. Dual performance characteristics of the fan are numerically investigated using viscous flow calculations. The Finite Volume Method is used to solve the continuity and Navier-Stokes equations in the flow domain around a fan. The performance parameters and the circumferentially averaged velocity components obtained from the calculations are compared with the experimental results. Numerical values of the performance parameters show good agreement with the measured values. The calculation simulates the steep variations of performance parameters at low flow rates and shows the difference in the flow structure between high and low flow rates. At a low flow coefficient of $\Phi$=0.2, the flow enters the fan in an axial direction and is discharged radially outward at its tip, which is much like the flow characteristics of a centrifugal fan. The centrifugal effect at low flow rates makes a significant difference in performance characteristics of the fan. As the inlet flow rate increases, flow around the fan changes into the mixed type at $\Phi$=0.24 and the axial discharge at $\Phi$=0.4.

터빈 익렬내부의 3차원 압축성 점성유동장의 수치해석 (Numerical Analysis of Three-Dimensional Compressible Viscous Flow Field in Turbine Cascade)

  • 정희택;백제현
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1915-1927
    • /
    • 1992
  • 본 연구에서는 3차원 압축성 내부유동해석 코드를 개발하여 터어빈 정익이나 동익 내부의 차원 익렬 유동을 수치적으로 해석하고자 한다. 여기에서 사용된 코드 는 Obyashi의 LU-ADI기법을 이용한 기존의 2차원 익렬 유동해석 코드를 3차원 유동장 으로 학장한 것이고, 난류유동해석에는, Baldwin-Lomax의 박층 대수모델을 3차원으로 확장한 알고리즘을 적용하였다.Kiock등이 실험한 선형 터어빈 익렬 내부의 천음속 유동장에 적용하여 양끝 벽면에 의한 3차원 유동장 특성을 분석하고, 3차원 익렬 유동 코드의 적합성을 검토하였다.

Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

  • Haoui, Rabah
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.149-155
    • /
    • 2011
  • The viscous flow in an axisymmetric nozzle was analyzed while accounting for the mesh sizes in both in the free stream and the boundary layer. The Navier-Stokes equations were resolved using the finite volume method in order to determine the supersonic flow parameters at the exit of the converging-diverging nozzle. The numerical technique in the aforementioned method uses the flux vector splitting of Van Leer. An adequate time stepping parameter, along with the Courant, Friedrich, Lewis coefficient and mesh size level, was selected to ensure numerical convergence. The boundary layer thickness significantly affected the viscous flow parameters at the exit of the nozzle. The best solution was obtained using a very fine grid, especially near the wall at which a strong variation of velocity, temperature and shear stress was observed. This study confirmed that the boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value. The nozzles are used at the exit of the shock tube in order to obtain supersonic flows for various tests. They also used in propulsion to obtain the thrust necessary to the displacement of the vehicles.

다공성 매질이 존재하는 용광로 내부 이상유체 경계면의 특성 (CHARACTERISTICS OF INTERFACE BETWEEN TWO-PHASE FLUIDS FLOW IN A FURNACE WITH POROUS MEDIUM)

  • 박경민;이동조;이정호;윤현식
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.110-116
    • /
    • 2016
  • The present study numerically investigated the deformation of the interface of two-phase fluids flow in a blast furnace. To simulate three-dimensional(3D) incompressible viscous two-phase flow in the furnace filled with the air and molten iron, the volume of fluid(VOF) method based on the finite volume method has been utilized. In addition, the porous medium with the porosity has been considered as the bed of the particles such as cokes and char etc. For the comparison, the single phase flow and the two-phase flow without the porosity have been simulated. The two-phase flow without porosity condition revealed the smooth parabolic profile of the free surface near the outlet. However, the free surface under the porosity condition formed the viscous finger when the free surface was close to the outlet. This viscous finger accelerated the velocity of the free surface falling and the outflow velocity of the fluids near the outlet.

자동차 프런트 엔드 쿨링팬 주위의 점성유동 해석 (Numerical Analysis of the Viscous Flow Around a Front End Cooling Fan of the Car)

  • 오건제;배춘근
    • 한국산업융합학회 논문집
    • /
    • 제10권4호
    • /
    • pp.221-226
    • /
    • 2007
  • Viscous flow around a front end cooling fan of the car is numerically investigated. The Navier-Stokes equations and the continuity equation are solved in the flow domain. The Reynolds stresses are modelled using the $k-{\varepsilon}$ turbulence model. The governing equations are discretized with the Finite Volume Method. The pressure and the velocity are linked with the SIMPLE algorithm. Flow and pressure characteristics around the fan are investigated. The pressure sharply increases through the fan blade. Pressure variations on the pressure and suction sides of the fan are well represened in the calculations. The flow streamlines in the blade passage are nearly parallel to the blade, but the slope of streamlines increases near the tip.

  • PDF

Zr계 벌크 비정질 합금의 과냉 액상 영역에서의 점성 유동 현상 연구 (A Study on Viscous Flow of the Zr-based Bulk Metallic Glass in an Undercooled Liquid State)

  • 이광석;하태권;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.265-268
    • /
    • 2004
  • In this present study, mechanical properties of the Zr-Ti-Cu-Ni-Be bulk metallic glass are characterized by compression test over a wide range of temperatures and strain rates. Three different types of deformation behavior have been identified as a result, viz., Newtonian viscous flow, non-Newtonian flow and brittle fracture without plastic deformation. A transition state theory is applicable fur the flow stress - strain rate curve that contains the transition from Newtonian to non-Newtonian flow. Based on the relationship between viscosity and strain rate within undercooled liquid state, we can easily obtain the experimental deformation map and suggest the boundaries among different deformation behavior of this alloy.

  • PDF

형상 충전 기법을 이용한 자유표면의 비정상 점성 유동장의 유한 요소 해석 (Finite Element Analysis of Transient Viscous Flow with Free Surface using Filling Pattern Technique)

  • 김기돈;정준호;양동열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.551-556
    • /
    • 2001
  • The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

  • PDF

점성-비점성 유동 반복계산 방법을 이용한 2차원 자동차모형의 공력 특성 예측 (Predicting aerodynamic characteristics of two-dimensional automobile shapes in ground proximity using an iterative viscous-potential flow technique)

  • 최도형;최철진
    • 오토저널
    • /
    • 제8권1호
    • /
    • pp.52-61
    • /
    • 1986
  • An iterative viscous-potential flow procedure has been developed and used to predict aerodynamic characteristics of automobiles in ground proximity. The method is capable of predicting the effects of separated flows. The viscous-potential flow iteration procedure provides the connection between potential flow, boundary layer and wake modules. The separated wake is modeled in the potential flow analysis by thin sheets across which exists a jump in velocity potential. The ground effect is properly accounted for by placing a body image in the potential flow calculation. The agreement between theory and experiment is good and, thus, demonstrates that the method can be used in the preliminary design stage.

  • PDF

Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers

  • Kim Moon-Sang;Sengupta Ayan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.877-886
    • /
    • 2005
  • Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect significantly the frequencies of the force oscillations as well as the mean values and the amplitudes of the drag and lift forces.