• 제목/요약/키워드: Viscosity of food

검색결과 1,793건 처리시간 0.032초

Quality Characteristics of Jeung-Pyun Prepared with Milk (우유 첨가에 따른 증편의 품질 선택)

  • Jang, Jung-Sun;Park, Young-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • 제18권3호
    • /
    • pp.311-321
    • /
    • 2008
  • In order to improve the insufficient protein content of Jeung-Pyun with respect to sitology, as well as its fermentation process, this study prepared Jeung-Pyun doughs containing 0, 5, 10, 15, and 20 g of milk, respectively, and examined their mechanical and functional characteristics. The internal structure of the Jeung-Pyun was observed by SEM. With regard to color, the L-value increased with increasing amounts of added milk, and the highest value (65.43) occurred in the group containing 20 g of added milk; however, there were no significant differences among groups. The group containing 20 g of added milk also presented the highest a-value, and the samples with added milk had higher b-values than the control. At 8 hours of fermentation, the 10 g- and 15 g-added milk groups had viscosities of 5726.67 and 6600 respectively; viscosity increased with increasing amounts of milk, and the added-milk groups had significantly higher values than the control group. Hardness also increased with increasing amounts of added milk. However, there were no significant differences in resilience and cohesive power among the groups. The groups containing 5 and 10 g of added milk had the lowest cohesion and break values. For appearance, the group without added milk had the whitest color. Pore size decreased and showed less uniformity as the amount of added milk increased. The unique tackju aroma of Jeung-Pyun decreased significantly as the level of added milk increased, and the 20 g addition presented the lowest value. The 10 g-added milk group had the highest level of sweetness, and sourness increased with increasing amounts of added milk. For softness, the control group was estimated as slightly softer than the added-milk groups. The stickiest sample was generally preferred when considering taste, white color, and sweetness. Among the quality characteristics, having greater stickiness, resilience, moisture, and softness was better in terms of chewing. Overall, the size of the Jeung-Pyun containing 10 g of milk was even and well-developed.

  • PDF

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • 제35권4호
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Uronic Acid Composition, Block Structure and Some Related Properties of Alginic Acid (4) On Alginic Acid from Myagropsis myagroides Fensholt and Sargassum horneri C. Agardh (알긴산의 화학적 조성 및 그 물성에 관한 연구 (4) 외톨개모자반 및 괭생이모자반의 알긴산)

  • KIM Dong-Soo;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제18권2호
    • /
    • pp.124-130
    • /
    • 1985
  • In the previous papers (Kim and Park, 1984 a, b; 1985 a), we have reported on alginic acid from Ecklonia cava and Sargassum ringgoldianum. The seasonal variation in the composition of uronic acids and their block structures of alginic acid from Myagropsis myagroides Fensholt and Sargassum horneri C. Agardh (collected from Iee Chun village on the coast of Ilgwang-myon, Yansan-gun, Kyungnam, Korea, in the period of January to December in 1982) are investigated, and their relationship between the chemical composition and some related properties are discussed in this study. One year average contents of alginic acid were $25.2\%$ in the M. myagroides and $26.5\%$ in the S. horneri, and one year average values of M/G ratios were 1.97 in the M. myagroides and 1.38 in the S. horneri. The value of M. myagroides was largest in the period of December to April, and smallest in May to June and October to November. The value of S. horneri was largest in January and smallest in March to April. The proportion of alternating, M and G block in M. myagroides were $18.4\%,\;40.4\%$, and $41.2\%$, and those in S. horneri $9.8\%,\;33.3\%$ and $56.9\%$, respectively. The higher viscosity showed the value of 45.3 cP in M. myagroides (in November), and 26.0 cP in S. horneri(in January), respectively. Furthermore, the dependence on temperature of M. myagroides alginic acid was also larger in November, that of S. horneri alginic acid in June. Ion exchange ability of M. myagroides alginic acid was highest in November and the exchange amounts were $Pb^{2+}\;4.4,\;Cu^{2+}\;1.8,\;Zn^{2+}\;2.5$ and $Co^{2+}\;2.0\;meq/g$. Na-Alg., and the ability of S. horneri alginic acid was highest in June and the amounts were $Pb^{2+}\;4.5,\;Cu^{2+}\;2.2,\;Zn^{2+}\;2.4$ and $Co^{2+}\;2.1\;meq/g.$ Na-Alg. The affinity with metallic ions appeared higher in order of $Pb^{2+}>Cu^{2+}>Zn^{2+}>Co^{2+}$, and the exchange ability assumed to relate with the block ratio of uronic acid.

  • PDF

Study on Confectionary Properties of Chou made with Flour of Rice and Rice-Wheat mixture (미분을 이용한 chou의 제과특성 연구)

  • 김명애;오승희
    • Korean journal of food and cookery science
    • /
    • 제11권1호
    • /
    • pp.69-76
    • /
    • 1995
  • This study was concentrated on the subject of chou formation and physicochemical characteristics on medium flour mixed with 0, 25, 50, 75, 100% of rice flour in order to clarify the possibility to substitute rice flour for wheat flour on chou preparation. The water holding capacity, swelling power, and maximum viscosity were higher in rice flour than those in medium flour but the initial pasting temperature was equal to 65$^{\circ}C$ in the two flour groups. The ratio of setback during cooling became 0.94 in the rice flour and 1.14 in the medium flour. So, the rice flour showed a slow tendency during gel formation as compared with the medium flour. The volumes of the rice choux were ranged from 80.0% to 89.0% according to the mixing ratio of medium flour as compared with that of the chou of wheat flour. But, the choux formation were increased as much as 108.8% out the paste added gelation of glutinous substance and 124.4% at the paste added Span20 of emulsifier compared to the non-addition treatment. The paste of rice flour added gelatin and Span20 showed better dispersion of components, especially, the small granules of lipid were fairly or plentifully dispersed in the paste added Span20 due to emulsifying activity. In sensory evaluation, the chou of l00% rice flour was inferior to that of medium flour on cavity-forming but the choux of wheat flour mixed with 25%, 50%, and 75% of rice flour were equal or superior to that of medium flour on all characteristics tested such as appearance, surface color, cavity-forming, chewiness, and taste. There were no significant differences on the cavity-forming expansion and taste between choux of rice flour and wheat flour Therefore, the results of this study made conclusion that rice flour would be substituted for wheat flour on the chou preparation.

  • PDF

Physical and cooking characteristic properties of parboiled rice (파보일미(Parboiled rice)의 이화학적 특성 II. 파보일미(추청벼)의 물리적 성질 및 조리특성)

  • 박선희;조은자
    • Korean journal of food and cookery science
    • /
    • 제11권2호
    • /
    • pp.126-132
    • /
    • 1995
  • This study was undertaken to determine effect of parboiling on physical and cooking characteristic properties of milled rice. Equilibrium moisture content(EMC) of parboiled rice soaked at room tempe-rature(25$^{\circ}C$) and high temperature(75$^{\circ}C$) increased 1.8∼2.7 times & 1.4∼l.6 times as compare to raw rice, and time to reach EMC of parboiled rice became longer 4 times and 1.7 times than raw rice respectively. Equilibrium volume(EV), time to reach EV and volume increase rate constants(ku) were similar to EMC, time to reach EMC, and k. kv of parboiled rice brought about in decrease at room temperature and increase at high temperature. The geletinization temperature, time and peak viscosity of parboiled rice were higher than those of raw rice. Parboiling brought about in decrease in L/W of cooked parboiled rice kernels and L/W increased according to presoaking time was prolo-nged. Solid content of cooking water of raw rice were higher than those of parboiled rice. Hardness of uncooked PL20 & PL40 soaked for 30 min was higher than that of raw rice but that of uncookef parboiled rice soaked for 90 min was lower than that of raw rice. Springness of cooked parboile rice for initial 10 min decresed with that of cooked raw rice and then increased sharply, cooked f, r 15 min then increased slowly, cooked parboiled rice for 40 min increased more than cooked raw rice. Color differences($\Delta$I) of PT2O samples was the lowest L value of all the samples increased but a and b value decreased according to milling degree was high.

  • PDF

Effect of Blanching Condition, Acid and Alkali Treatments on the Qualities of Carrot Juices (Blanching 조건(條件) 및 산(酸)·알칼리 처리(處理)가 당근주우스의 품질(品質)에 미치는 영향(影響))

  • Kim, Woon Sung;Kim, Seung Yeol
    • Korean Journal of Agricultural Science
    • /
    • 제10권1호
    • /
    • pp.135-145
    • /
    • 1983
  • This study was conducted to obtain the fundamental data for the processing of carrot juices and know the effects of blanching conditions, acid and alkali treatments and sterilization on the quality factors of carrot juices. The result obtained was as follows. 1. Blanching condition, $100^{\circ}C$, 5min. was the most effective for the Brix, amino-N content, suspended solid, light transmittance and yield of carrot juices among $90^{\circ}C$, 15min., $95^{\circ}C$, 10 min., and $100^{\circ}C$, 5min. 2. 0.05N-acetic acid solution was the most effective blanching solution for the suspended solid, light transmittance, viscosity and yield of the juices compared to 0.05N-citric acid and 0.03N-hydrochloric acid solution. 3. The color changes during the processing of carrot juices caused by blanching process rather than sterilization process. 4. The ${\beta}$-carotene in carrot juices was very stable and about 80 % of it was remained in the carrot juice which had been blanched, extracted and sterilized at $115^{\circ}C$ for 30min. 5. Alkali treatment for the juice from acid - blanched carrots formed discoloration after sterilization. 6. Relative content (%) of sugars in raw carrot juice we re ribose, 8.51%; fructose. 10.15%; glucose, 12.25%; sucrose, 49.53% and oligosaccharide, 19.56%. When the carrots were blanched in boiling water, the contents of monosaccharide and disaccharide decreased slightly but that of oligosaccharide increased slightly, however, when the carrots were blanched in acid solution, and then neutralized and sterilized, relative contents of ribose and sucrose decreased remarkably but that of oligosaccharide increased considerably and those of glucose and fructose increased slightly. 7. Nineteen sorts of free amino acid were detected from the carrot juices and the mains of them were threonine+asparagine, alanine, serine+glutamine, aspartic acid, arginine, and glutamic acid.

  • PDF

Effects of NaCl Concentration on Physicochemical Properties of Pork Emulsion (NaCl 첨가량에 따른 돈육 유화물의 이화학적 특성)

  • Park, Sin-Young;Kim, Hack-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제45권4호
    • /
    • pp.551-556
    • /
    • 2016
  • This study was conducted to investigate the effects of NaCl concentration on the physicochemical properties of pork emulsion. Pork emulsion was produced containing 0% (control), 0.3%, 0.6%, 0.9%, 1.2%, and 1.5% NaCl. Proximate composition of pork emulsion containing 1.5% NaCl showed the highest moisture content (P<0.05). The ash contents of pork emulsion increased with an increase in NaCl, and protein contents decreased with increasing NaCl concentration. The pH levels of uncooked pork emulsion containing 0.9%, 1.2%, and 1.5% NaCl were lower than those of other treatments (P<0.05), and the pH level of cooked pork emulsion containing NaCl was lower than that of the control (P<0.05). The CIE $L^*$ value of the uncooked pork emulsion samples containing NaCl was higher than that of the control (P<0.05), whereas CIE $a^*$ and CIE $b^*$ values of samples with NaCl were lower than the control (P<0.05). CIE $L^*$ and CIE $b^*$ values of cooked pork emulsion decreased with an increase in NaCl level, and CIE $a^*$ value increased with increasing NaCl concentration (P<0.05). Viscosity of the pork emulsion increased with an increase in NaCl. Texture profile analysis of pork emulsion containing NaCl showed no significant difference in springiness or cohesiveness (P>0.05). Pork emulsion containing 1.5% NaCl showed the highest hardness, gumminess, and chewiness (P<0.05). These results suggest that pork emulsion containing 0.9% and 1.2% NaCl can be used as a low-salt meat product.

Fermentation Properties of the Mixed Yogurt Prepared with Bovine Milk and Soybean Milk (우유와 두유를 혼합한 요구르트의 발효 특성)

  • Bae, Hyoung-Churl;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • 제25권4호
    • /
    • pp.483-493
    • /
    • 2005
  • This experiment was carried out to examine the fermentation properties of yogurt prepared with bovine milk and soybean milk at the mixed ratios of 3:1, 2:1, 1:1, 1:2 and 1:3. The effect of bovine milk and soybean milk on promoting the fermentation was higher un pH was $3.75\~4.16$ when Lactobacillus salivarius ssp. salivarius CNU27, lactic culture 1(Lactobacillus delbrueckii ssp. bulgaricus(LB12)), Streptococcus salivarius ssp. thermophilus (ST36) and Lactobacillus acidophilus KCTC3150 were used. Titratable acidity was the highest when lactic culture 1[Lactobacillus delbrueckii ssp. bulgaricus(LB12), Streptococcus salivarius ssp. thermophilus(ST36)] was mea and the mixed ratio of bovine milk and soybean milk was 2:1. The average viable counts of lactic acid bacteria was the highest level of $2.17\times10^9$ cfu/ml when Lactobacillus salivarius ssp. salivarius CNU27 was used, and the mixed ratio of bovine milk and soybean milk was 1:3. the highest lactic acid production was 412.52mM when lactic culture 1[Lactobacillus delbrueckii ssp. bulgaricus (LB12), Streptococcus salivarius ssp. thermophilus (ST36)] was used, and the mixed ratio of bovine milk and soybean milk was 1:1. The production of acetic acid was the highest and the concentration was 394.01mM when lactic culture 2(Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus salivarius ssp. thermophilus) was used and the mixed ratio of bovine milk and soy bean milk was 3:1. Tn the carbohydrate hydrolysis, stachyose was hydrolyzed $53.92\%$ as compared with the control when Lactobacillus salivarius subsp salivarius CNU27 was used, and the mixed ratio of bovine milk and soy bean milk was 1:3. The highest viscosity of yogurt was $1,300\~1,660$ cP when the mixed ratio of bovine milk and soybean milk was 1:3. The overall acceptability, $4.17\pm0.69$, was the highest when Lactobacillus acidophilus KCTC3150 was used and when the mixed ratio of bovine milk and soybean milk was 2:1.

The Quality Characteristics of Teriyaki Sauces according to the Main Ingredient (주재료에 따른 데리야끼 소스의 품질 특성)

  • Song, Chung-Rak;Choi, Soo-Keun
    • Journal of the East Asian Society of Dietary Life
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2009
  • In the present study, three types of teriyaki sauce were prepared using chicken bone and eel bone, which are commonly used as the primary ingredient of teriyaki sauce, as well as codfish bone, which has various functions. The and analyzed their quality characteristics of the different types of teriyaki sauce were then compared through physiochemical and sensory evaluation. The results of this study were as follows. The water content was lowest and the ash content was highest in teriyaki sauce that was prepared using chicken bone as the primary ingredient. In addition, the Ca, K, Mg, Na and P content were highest in the teriyaki sauce that was prepared using chicken bone as the primary ingredient. The total free amino acid content was highest in teriyaki sauce prepared using chicken bone, followed by sauces prepared using codfish bone and eel bone. The levels of free amino acids evaluated in this study occurred in the following order for all teriyaki sauces: glutamic acid > aspartic acid > leucine. When the sensory evaluation was conducted, teriyaki sauce prepared using chicken bone as the main ingredient was found to be best, followed by sauce prepared using codfish bone in terms of palatability and viscosity among descriptive scales, and smell and general preference among hedonic scales. The results of this study suggest that teriyaki sauce could be produced using codfish bone instead of chicken bone, which would enable production of a high value-added product through the use of a common byproduct. This would result in the efficient use of unused resources, prevention of environmental pollution and supply of an inexpensive that could be widely used in the food processing and food service industries.

  • PDF

Application to the Biscuits Manufacture of Processed Amaranth Seeds (아마란스(Amaranth) 종실의 가공에 따른 비스킷 제품에의 적용)

  • 김진수;유희중
    • The Korean Journal of Food And Nutrition
    • /
    • 제15권4호
    • /
    • pp.321-325
    • /
    • 2002
  • For examination, amaranth was first dried its surface after sufficient soaking in water. Dried amaranth was roasted when the moisture contents reached 30∼50%, its nasty smell disappeared and its color turned to yellow and it was puffed. Pretreated amaranth was added to biscuit for the improvement of apparence and merchandise value. The maximum expansion was reported at the moisture percentage of 130∼160% according to the examination of expansion and moisture percentage. In order to compare gelatinization of different processing, three different amaranth were prepared as follows ; Raw amaranth, steamed/dried amaranth, and roasted amaranth. The degree of gelatinization was increased as the percentage of moisture was increased and the degree of gelatinization of roasted amaranth was higher than the one of steamed/dried amaranth, their moisture contents were 62.10% and 57.59%, respectively In addition, the hardness($\times$10$\^$5/dyn/㎠) of roasted amaranth was showed lower values than that of steamed amaranth and raw amaranth were showed the large values. After examining biscuits containing each amaranth, raw amaranth had problem with nasty smell and bad texture, and streamed/dried amaranth were able to remove viscosity but turned brown. Biscuits containing roasted amaranth had good smell and texture, and besides the color of biscuits became bright because roasted amaranth turned white. Biscuits tasted best when it contained 5% of roasted amaranth. The rancidity of biscuits with 5% roasted amaranth were proceeded slowly while roasted amaranth itself had high acid value and peroxide value. For the safety from oxidation, it was fairly safe for about 6 months.