• 제목/요약/키워드: Viscosity method

검색결과 1,132건 처리시간 0.029초

Synthesis and Characterization of Cu Nanofluid Prepared by Pulsed Wire Evaporation Method (전기선 폭발법을 이용하여 제조된 구리 나노유체의 특성평가)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • 제17권4호
    • /
    • pp.270-275
    • /
    • 2010
  • Ethylene glycol-based Cu nanofluids were prepared by pulsed wire evaporation (PWE) method. The structural properties of Cu nanoparticles were studied by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The average diameter and Brunauer Emmett Teller (BET) surface area of Cu nanoparticles were about 100 nm and $7.46\;m^2/g$, respectively. The thermal conductivity and viscosity of copper nanofluid were measured as functions of Cu concentration and temperature. As the volume fraction of Cu nanoparticles increased, both the enhanced ratios of thermal conductivity and viscosity of Cu nanofluids increased. As the temperature increased, the enhanced ratio of thermal conductivity increased, but that ratio of viscosity decreased.

Method for Rapid and Accurate Measurement of Chitosan Viscosity

  • No, Hong -Kyoon;Samuel P. Meyers
    • Preventive Nutrition and Food Science
    • /
    • 제4권2호
    • /
    • pp.85-87
    • /
    • 1999
  • A simple and rapid method to estimate the viscosity of chitosan using laboratory pipettes was developed. The voscosities of nine different chitosan samples, prepared ini 1 % acetic acid at a 1% concentration , were measured with a standard viscometer. Prior to measurement of flow time of 1% chitosan solution with a pipette, twelve pipettes were assorted into three groups with flow times of 4, 5 and 6 sec after measuring passage of 9 ml of 1% acetic acid througth a 10 ml pipette. With each group of pipettes. flow time of 1% chitosan solution was determined by measuring the delivery time of 5 ml of the 10ml solution through a 10 ml pipette. Results of regression analyses revealed high linear relationship(R2=0.9812, 0.9663, and 0.9754) between viscosities calculated with a viscometer and flow times measured with 4, 5 or 6 sec group pipettes. The viscosity of chitosan could be readily and accurately estimated from these linear regression equation by measuring flow times based on pipette delivery.

  • PDF

Numerical analysis of drag reduction of turbulent flow in a pipe (원관내 난류의 저항감소현상에 대한 수치해석)

  • 홍성진;김광용;최형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제11권6호
    • /
    • pp.733-739
    • /
    • 1999
  • A modified low-Re $k-\varepsilon$ model is used for the calculation of drag-reducing turbulent flow by polymer injection in a pipe. With the viscoelastic model, molecular viscosity in the definition of turbulent viscosity is related to elongations viscosity of the solution to account for the effects of drag reduction. Finite volume method is used for the discretization, and power-law scheme is used as a numerical scheme. Computed dimensionless velocity profiles are in good agreements with the experimental data in case of low drag reductions. However, in case of high drag reductions, they deviate largely from the measurements in the central zone of the flow field.

  • PDF

Comparative Study on Test Method of Pot Life of Structural Adhesives for FRP Composite Material used in Strengthening RC Members (구조보강용 FRP 함침.접착수지의 사용가능시간 시험방법 비교 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.353-356
    • /
    • 2006
  • Hardening of 2 component adhesive such as epoxy resin used in saturating FRP composite is triggered by mixing each component part within a batch. Chemical reactions occur explosively after a certain time after mixing the batch, viscosity and temperature rapidly increase. As a results, bond performance remarkably decreases and workability declines due to increase in viscosity. Therefore, adhesion should be completed before chemical hardening reaction is rapidly going on. This study examined pot life of structural adhesive for FRP composites by means of change in apparent viscosity and means of exothermic reaction temperature proposing in existing test standards. Result of each test method was compared and analyzed, and reasonable test method and evaluation method are suggested.

  • PDF

Improvement method for viscosity measurement of high viscosity paper and fabric cultural heritages (고점도 지류 및 섬유 문화재의 점도 측정 개선 방법 연구)

  • Kim, Young-Hee;Hong, Jin-Young;Jo, Chang-Wook;Kim, Soo Ji;Lee, Jeung-Min;Seo, Min Seok;Choi, Kyoung Hwa
    • 보존과학연구
    • /
    • 통권34호
    • /
    • pp.20-29
    • /
    • 2013
  • Paper, textile and wood materials are mainly consisted of cellulose. Cellulose is high molecule and make up the strong crystalline structure by hydrogen bonds. In particular, the polymerization degree of cellulose are closely related to the strength of fiber, and the permanence. the useful life of fiber, also depends on the degradation of this substance. The viscosity of cellulose is considered to be an important indicator of fiber damage in high molecule polymers. The viscosity measurements with CED solution is used to measure the molecular weight and the degree of polymerization of cellulose. Cellulose viscosity of wood fibers is measured with TAPPI standard method T230. However, TAPPI standard method T230 is difficult to completely dissolving the cellulose of high molecular weight and large degree of polymerization, such as Korea traditional papers and fabrics made with mulberry, ramie, cotton fibers. In this study, The high viscosity of hanji and fabric was measured with TAPPI standard method T254. T254 method is that the cellulose specimen with the proper amount of weaker (0.167M CED) solution, and completely dissolved with the stronger (1.0M CED) solution. It was found that cellulose with high degree of polymerization was dissolved more easily in general CED method.

  • PDF

Analysis of a Bydrodynamic Bearing of a BDD Spindle Motor Due to Elevated Temperature (온도변화에 의한 HDD 유체 동압 베어링의 특성 해석)

  • Kim Kwan Soo;Kim Hak Woon;Lee Haeng Soo;Kim Chul Soon;Jang Gun Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제29권5호
    • /
    • pp.762-769
    • /
    • 2005
  • This paper presents a method to investigate the characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature considering the variation of the clearance as well as the lubricant viscosity. Iterative finite element analysis of the heat conduction and the thermal deformation is performed to determine the viscosity and clearance of a hydrodynamic bearing due to elevated temperature until the temperature of the bearing area converges. Proposed method is verified by comparing the calculated temperature with the measured one in elevated surrounding temperature as well as in room temperature. This research shows that elevated temperature changes the clearance as well as the lubricant viscosity of the hydrodynamic bearing of a HDD spindle motor. Once the viscosity and the clearance of a hydrodynamic bearing of a HDD spindle motor are determined, finite element analysis of the Reynolds equation is performed to investigate the static and dynamic characteristics of a hydrodynamic bearing of a HDB spindle motor due to elevated temperature. It also shows that the variation of clearance due to elevated temperature is another important design consideration to affect the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor

Rheological behavior of dilute bubble suspensions in polyol

  • Lim, Yun-Mee;Dongjin Seo;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제16권1호
    • /
    • pp.47-54
    • /
    • 2004
  • Low Reynolds number, dilute, and surfactant-free bubble suspensions are prepared by mechanical mixing after introducing carbon dioxide bubbles into a Newtonian liquid, polyol. The apparent shear viscosity is measured with a wide-gap parallel plate rheometer by imposing a simple shear flow of capillary numbers(Ca) of the order of $10^{-2}$ ~ $10^{-1}$ and for various gas volume fractions ($\phi$). Effects of capillary numbers and gas volume fractions on the viscosity of polyol foam are investigated. At high capillary number, viscosity of the suspension increases as the gas volume fraction increases, while at low capillary number, the viscosity decreases as the gas volume fraction increases. An empirical constitutive equation that is similar to the Frankel and Acrivos equation is proposed by fitting experimental data. A numerical simulation for deformation of a single bubble suspended in a Newtonian fluid is conducted by using a newly developed two-dimensional numerical code using a finite volume method (FVM). Although the bubble is treated by a circular cylinder in the two dimensional analysis, numerical results are in good agreement with experimental results.

Analysis of a Hydrodynamic Bearing of a HDD Spindle Motor Due to Elevated Temperature (온도변화에 의한 HDD 유체 동압 베어링의 특성 해석)

  • 김학운;김관수;장건희;이행수;김철순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.556-563
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature considering the variation of the clearance as well as the lubricant viscosity. Iterative finite element analysis of the heat conduction and the thermal deformation is performed to determine the viscosity and clearance of a hydrodynamic bearing due to elevated temperature until the temperature of the bearing area converges. Proposed method is verified by comparing the calculated temperature with the measured one in elevated surrounding temperature as well as in room temperature. This research shows that elevated temperature changes the clearance as well as the lubricant viscosity of the hydrodynamic bearing of a HDD spindle motor. Once the viscosity and clearance of a hydrodynamic bearing of a HDD spindle motor are determined, finite element analysis of the Reynolds equation is performed to investigate the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature. It also shows that the variation of clearance due to elevated temperature is another important design consideration to affect the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor.

  • PDF

A Study on Development Process of Evaporating Diesel Spray (증발디젤분무의 발달 과정에 관한 연구)

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Si-Pom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제15권3호
    • /
    • pp.141-146
    • /
    • 2007
  • In this study, the effects of change in ambient gas viscosity on spray structure have been investigated in the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Emissions of diesel engines can be reduced by the control of the mixture formation process. Therefore, this study examines the evaporating spray structure in the constant volume chamber. The viscosity of ambient gas was selected as the experimental parameter, is changed from 21.7 mPa s to 32.1 mPa s by changing in ambient gas temperature. In order to obtain images of the liquid and vapor-phase of injected spray, exciplex fluorescence method was used in this study. The liquid and vapor-phase images were taken with 35mm still camera and CCD camera, respectively. Consequentially, it could be confirmed that the distribution of vapor concentration is more uniform in the case of the ambient gas with high viscosity than in that of the ambient gas with low viscosity.

A Study on the Viscosity and Surface Tension for Foaming Materials and the Effects of Addition Elements (발포재료(Al)의 점성 및 표면장력과 첨가요소의 영향에 관한 연구)

  • Park, Soo-Han;Kim, Sang-Youl;Ahn, Duck-Kyu;Ha, Dong-In;Cho, Soon-Hyung;Bae, Suk-Cheon;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • 제12권9호
    • /
    • pp.729-734
    • /
    • 2002
  • Porous Al metal was produced by batch type casting process. In this foaming process, the viscosity and surface tension of molten Al as two most important factors have been investigated in the temperature range of 680-95$0^{\circ}C$ by the ring method and rotational method respectively. The experimental results showed that both the surface tension and viscosity of the melt decreased linearly with increasing temperature. Addition of Ca decreased surface tension, but increased viscosity significantly.