• Title/Summary/Keyword: Visco-elastic Layer

Search Result 21, Processing Time 0.021 seconds

Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM

  • Abdulrazzaq, Mohammed Abdulraoof;Muhammad, Ahmed K.;Kadhim, Zeyad D.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.201-217
    • /
    • 2020
  • This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two scale factors are included in the formulation for describing size influences based on NSGT. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is presented based on three factors including a viscous layer and two elastic layers.The governing equations achieved by Hamilton's principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, temperature rise,scale factors and viscous damping.

DEVELOPMIN OF A MODIFIED $k-{\varepsilon}$ TURBULENCE MODEL FOR VISCO-ELASTIC FLUID AND ITS APPLICATION TO HEMODYNAMICS (점탄성 유체의 난류 해석을 위한 수정된 $k-{\varepsilon}$ 난류모델 개발 및 혈류역학에의 적용)

  • Ro, K.C.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.214-220
    • /
    • 2010
  • This article described that a high Reynolds number version of a turbulence model was modified by using drag reduction to analyze the turbulent flows of non-Newtonian fluid with visco-elastic viscosity and it was applied hemodynamics which was representative of visco-elastic fluid. The turbulence characteristics of visco-elastic fluid was expanded viscous sublayer region and buffer layer region by drag reduction phenomenon and also Newtonian turbulence models does not predict because viscosity was related with shear rate of fluid flow. Hence numerical simulation using a modified turbulence model was conducted under the same conditions that were applied to obtain the experiment results and previous turbulence models and then the numerical investigation of turbulent blood flow in the stenosed artery bifurcation under periodic acceleration of the human body.

  • PDF

Development of Analysis Model for Underwater Acoustic Performance of Multi-Layered Coatings Containing Visco-Elastic Composites (점탄성 복합재가 포함된 다층구조 코팅재의 수중음향성능 해석모델 개발)

  • Kim, Jae Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2018
  • In this paper, an integrated analysis model for evaluating the underwater acoustic performance of the multilayered acoustic coatings containing visco-elastic composite layers with hollow glass microspheres is described. The model uses the effective medium theory considering the acoustic scattering and resonance effects of the inclusions. Also, the model incorporates the compressive deformation mechanism associated with hydrostatic pressure. The technique developed in this work was used as the acoustic layer design and performance analysis tools for the practical hull coatings and acoustic baffles in Korean next generation submarines.

A Study of Floor Impact Noise Reduction of Cabin Using Floating Floor (뜬바닥구조를 이용한 선실 바닥충격음 저감에 관한 연구)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Cha, Sun-Il;Kim, Young-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.41-47
    • /
    • 2004
  • In this paper, floor impact noise reduction in cruise ship cabin is studied. A mock-up is built by using 6t steel plate, and two identical cabins are made where 25t panel is used to construct wall and ceiling inside the steel structure. Various floating floor systems are tested for which normalized impact noise is measured according to ISO 140-7. In addition, floor SBN (Structure-borne Noise) and floor damping are measured to study the effect of floating floor structure. It is shown that VL(Visco-elastic Layer) is more effective when hard plates are added above the VL.

The applications and conduct of vibration equations for constrained layered damped plates with impact

  • Luo, G.M.;Lee, Y.J.;Huang, C.H.
    • Steel and Composite Structures
    • /
    • v.8 no.4
    • /
    • pp.281-296
    • /
    • 2008
  • Visco-elastic material and thin metals were adhered to plate structures, forming the composite components that are similar to the sandwich plates, called constrained layered damped (CLD) plates. Constrained layer damping has been utilized for years to reduce vibration, and advances in computation and finite element analysis software have enabled various problems to be solved by computer. However, some problems consume much calculation time. The vibration equation for a constrained layered damped plate with simple supports and an impact force is obtained theoretically herein. Then, the results of the vibration equation are compared with those obtained using the finite element method (FEM) software, ABAQUS, to verify the accuracy of the theory. Finally, the 3M constrained layer damper SJ-2052 was attached to plates to form constrained layered damped plates, and the vibration equation was used to elucidate the damping effects and vibration characteristics.

Analytical and Experimental Study on the Damping of Vibrating Layered Plates Including the Effects of Shear and Thickness Deformation of the Adhesive Layer (접착제층의 전단과 법선변형 효과를 고려한 적층판의 진동감쇠특성 연구)

  • 김재호;박태학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1244-1254
    • /
    • 1992
  • This paper investigates the vibrational damping characteristics of laminated plates composed of elastic, viscoelastic and elastic layers by theoretical and experimental methods. Laminated plates are in cylindrical bending and visco-elastic adhesive layer is assumed as the visco-elastic spring which takes damping effect through both shear and normal deformations. Governing equations oof laminated plates are derived in the form of simultaneous first order differential equations, which account for the longitudinal displacements, rotary inertia and shear deformations of elastic base plate and elastic constraining plate. The numerical calculations of the equations are illustrated by the applications to the cantilever beam in transverse vibration. The results of the solutions agree well with the experimental measurements in general. The damping effects due to the shear and thickness deformations in the adhesives are analyzed and it is shown that for thicker adhesives, the damping effect due to thickness deformation becomes significant and for thinner adhesives, due to shear deformation.

Evaluation of mechnical preoperties of vibration damping steel sheets and their application to automobile engine oil pan (제진강판의 기계적 특성평가와 자동차오일팬으로의 적용)

  • 정재환;민병두;하용철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.99-118
    • /
    • 1994
  • In recent years reduction in noise and vibration in automobile has been strongly required not only from the standpoint of environmental regulations but also for raising the commercial value and ride comfort. Vibration damping steel sheets, which are composites made by sandwitching a visco-elastic resin layer between two steel sheets, have been developed as effective noise-abating materials and have found a growth of use in automobile industries. Vibration damping steel sheets for commercial use must be excellent in vibration damping property, press formability and spot weldability, but are inferior to ordinary steel sheets. In this study, the mechanical properties of vibration damping steel are evaluated, and press formability is analysed on the basis of those properties and shear bonding strength. The development of engine oil pan using damping steel sheets are also reported, focusing on serious problems in oil pan drawing.

Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation

  • Cui, Chun Y.;Meng, Kun;Wu, Ya J.;Chapman, David;Liang, Zhi M.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.609-618
    • /
    • 2018
  • A new mechanical model for predicting the vibration of a pipe pile embedded in longitudinally layered visco-elastic media with radial inhomogeneity is proposed by extending Novak's plain-strain model and complex stiffness method to consider viscous-type damping. The analytical solutions for the dynamic impedance, the velocity admittance and the reflected signal of wave velocity at the pile head are also derived and subsequently verified by comparison with existing solutions. An extensive parametric analysis is further performed to examine the effects of shear modulus, viscous damping coefficient, coefficient of disturbance degree, weakening or strengthening range of surrounding soil and longitudinal soft or hard interbedded layer on the velocity admittance and the reflected signal of wave velocity at the pile head. It is demonstrated that the proposed model and the obtained solutions provide extensive possibilities for practical application compared with previous related studies.

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • Lee, Doo-Ho;Hwang, Woo-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.938-946
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximizeloss factor using a numerical search method. The fractional derivative model can describe damping characteristics of viscoelastic damping materials accurately, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kelvin[RUK] equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are identified with ambient temperatures and thickness ratios of beam and damping layer by using a finite-difference-based steepest descent method.