• Title/Summary/Keyword: Virus-induced Gene Silencing

Search Result 27, Processing Time 0.023 seconds

Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

  • Park, Sang-Ho;Choi, Hoseong;Kim, Semin;Cho, Won Kyong;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.371-376
    • /
    • 2016
  • Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

Alternanthera mosaic virus - an alternative 'model' potexvirus of broad relevance

  • Hammond, John;Kim, Ik-Hyun;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.145-180
    • /
    • 2017
  • Alternanthera mosaic virus (AltMV) is a member of the genus Potexvirus which has been known for less than twenty years, and has been detected in Australasia, Europe, North and South America, and Asia. The natural host range to date includes species in at least twenty-four taxonomically diverse plant families, with species in at least four other families known to be infected experimentally. AltMV has been shown to differ from Potato virus X (PVX), the type member of the genus Potexvirus, in a number of ways, including the subcellular localization of the Triple Gene Block 3 (TGB3) protein and apparent absence of interactions between TGB3 and TGB2. Differences between AltMV variants have allowed identification of viral determinants of pathogenicity, and identification of residues involved in interactions with host proteins. Infectious clones of AltMV differing significantly in symptom severity and efficiency of RNA silencing suppression have been produced, suitable either for high level protein expression (with efficient RNA silencing suppression) or for Virus-Induced Gene Silencing (VIGS; with weaker RNA silencing suppression), demonstrating a range of utility not available with most other plant viral vectors. The difference in silencing suppression efficiency was shown to be due to a single amino acid residue substitution in TGB1, and to differences in subcellular localization of TGB1 to the nucleus and nucleolus. The current state of knowledge of AltMV biology, including host range, strain differentiation, host interactions, and utility as a plant viral vector for both protein expression and VIGS are summarized.

Application of a Reassortant Cucumber mosaic virus Vector for Gene Silencing in Tomato and Chili Pepper Plants

  • Hong, Jin-Sung;Rhee, Sun-Ju;Kim, Eun-Ji;Kim, Tae-Sung;Ryu, Ki-Hyun;Masuta, Chikara;Lee, Gung-Pyo
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • We developed a reassortant RNA virus vector derived from $Cucumber$ $mosaic$ $virus$ (CMV), which has advantages of very wide host range and can efficiently induce gene silencing in a few model plants. Certain CMV isolates, however, show limited host ranges presumably because they naturally co-evolved with their own hosts. We used a reassortant comprised of two strains of CMV, Y-CMV and Gn-CMV, to broaden the host range and to develop a virus vector for virus-induced gene silencing (VIGS). Gn-CMV could infect chili pepper and tomato more efficiently than Y-CMV. Gn-CMV RNA1, 3 and Y-CMV RNA2-A1 vector were newly reconstructed, and the transcript mixture of RNA1 and 3 genomes of Gn-CMV and RNA2 genome of Y-CMV RNA2 containing portions of the endogenous phytoene desaturase (PDS) gene (CMV2A1::PDSs) was inoculated onto chili pepper (cv. Chung-yang), tomato (cvs. Bloody butcher, Tigerella, Silvery fir tree, and Czech bush) and $Nicotiana$ $benthamiana$. All the tested plants infected by the reassortant CMV vector showed typical photo-bleaching phenotypes and reduced expression levels of $PDS$ mRNA. These results suggest that the reassortant CMV vector would be a useful tool for the rapid induction of the RNA silencing of endogenous genes in chili pepper and tomato plants.

Effect of Rice stripe virus NS3 on Transient Gene Expression and Transgene Co-Silencing

  • Sohn, Seong-Han;Huh, Sun-Mi;Kim, Kook-Hyung;Park, Jin-Woo;Lomonossoff, George
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.310-314
    • /
    • 2011
  • Nonstructural protein 3 (NS3) encoded by RNA3 of Rice stripe virus (RSV), known to be a suppressor of gene silencing, was cloned and sequenced. The cloned NS3 gene is composed of 636 nucleotides encoding 211 deduced amino acids, and showed a high degree of similarity with the equivalent genes isolated from Korea, Japan and China. The NS3 gene promoted the enhancement of transient gene expression and suppressed transgene co-silencing. In the transient GFP expression via agroinfiltration, GFP expression was dramatically enhanced in terms of both protein yield and expression period in the presence of NS3. The highest accumulation of GFP protein reached to 6.8% of total soluble proteins, which corresponded to a two-fold increase compared to that obtained in the absence of NS3. In addition, NS3 significantly suppressed the initiation of GFP co-silencing induced by the additive GFP infiltration in GFP-transgenic Nicotiana benthamiana. The NS3 gene was also found to be a stronger suppressor than Cucumber mosaic virus 2b. These observations are believed to be derived from the strong suppressive effect of NS3 on gene silencing, and indicate that NS3 could be used as an effective enhancer for the rapid production of foreign proteins in plants.

Silencing of NbNAP1 Encoding a Plastidic SufB-like Protein Affects Chloroplast Development in Nicotiana benthamiana

  • Ahn, Chang Sook;Lee, Jeong Hee;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.112-118
    • /
    • 2005
  • It was previously shown that AtNAP1 is a plastidic SufB protein involved in Fe-S cluster assembly in Arabidopsis. In this study, we investigated the effects of depleting SufB protein from plant cells using virus-induced gene silencing (VIGS). VIGS of NbNAP1 encoding a Nicotiana benthamiana homolog of AtNAP1 resulted in a leaf yellowing phenotype. NbNAP1 was expressed ubiquitously in plant tissues with the highest level in roots. A GFP fusion protein of the N-terminal region (M1-V103) of NbNAP1 was targeted to chloroplasts. Depletion of NbNAP1 resulted in reduced numbers of chloroplasts of reduced size. Mitochondria also seemed to be affected. Despite the reduced number and size of the chloroplasts in the NbNAP1 VIGS lines, the expression of many nuclear genes encoding chloroplast-targeted proteins and chlorophyll biosynthesis genes remained unchanged.

Soybean mosaic virus Infection and Helper Component-protease Enhance Accumulation of Bean pod mottle virus-Specific siRNAs

  • Lim, Hyoun-Sub;Jang, Chan-Yong;Bae, Han-Hong;Kim, Joon-Ki;Lee, Cheol-Ho;Hong, Jin-Sung;Ju, Ho-Jong;Kim, Hong-Gi;Domier, Leslie L.
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.315-323
    • /
    • 2011
  • Soybean plants infected with Bean pod mottle virus (BPMV) develop acute symptoms that usually decrease in severity over time. In other plant-virus interactions, this type of symptom recovery has been associated with degradation of viral RNAs by RNA silencing, which is accompanied by the accumulation of virus-derived small interfering RNAs (siRNAs). In this study, changes in the accumulation of BPMV siRNAs were investigated in soybean plants infected with BPMV alone, or infected with both BPMV and Soybean mosaic virus (SMV) and in transgenic soybean plants expressing SMV helper component-protease (HC-Pro). In many potyviruses, HC-Pro is a potent suppressor of RNA silencing. In plants infected with BPMV alone, accumulation of siRNAs was positively correlated with symptom severity and accumulation of BPMV genomic RNAs. Plants infected with both BPMV and SMV and BPMV-infected transgenic soybean plants expressing SMV HC-Pro exhibited severe symptoms characteristic of BPMVSMV synergism, and showed enhanced accumulation of BPMV RNAs and siRNAs compared to plants infected with BPMV alone and nontransgenic plants. Likewise, SMV HC-Pro enhanced the accumulation of siRNAs produced from a silenced green fluorescent protein gene in transient expression assays, while the P19 silencing suppressor of Tomato bushy stunt virus did not. Consistent with the modes of action of HC-Pro in other systems, which have shown that HC-Pro suppresses RNA silencing by preventing the unwinding of duplex siRNAs and inhibiting siRNA methylation, these studies showed that SMV HC-Pro interfered with the activities of RNA-induced silencing complexes, but not the activities of Dicer-like enzymes in antiviral defenses.

Enhancement of Virus-induced Gene Silencing in Tomato by Low Temperature and Low Humidity

  • Fu, Da-Qi;Zhu, Ben-Zhong;Zhu, Hong-Liang;Zhang, Hong-Xing;Xie, Yuan-Hong;Jiang, Wei-Bo;Zhao, Xiao-Dan;Luo, Yun-Bo
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.153-160
    • /
    • 2006
  • Virus-induced gene silencing (VIGS) is an attractive reverse-genetics tool for studying gene function in plants. We showed that silencing of a phytoene desaturase (PDS) gene is maintained throughout TRV-PDS-inoculated tomato plants as well as in their flowers and fruit and is enhanced by low temperature ($15^{\circ}C$) and low humidity (30%). RT-PCR analysis of the PDS gene revealed a dramatic reduction in the level of PDS mRNA in leaves, flowers and fruits. Silencing of PDS results in the accumulation of phytoene, the desaturase substrate. In addition, the content of chlorophyll a, chlorophyll b and total chlorophyll in the leaves of PDS-silenced plants was reduced by more than 90%. We also silenced the LeEIN2 gene by infecting seedlings, and this suppressed fruit ripenning. We conclude that this VIGS approach should facilitate large-scale functional analysis of genes involved in the development and ripening of tomato.

Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans

  • Kim, Kil Hyun;Lim, Seungmo;Kang, Yang Jae;Yoon, Min Young;Nam, Moon;Jun, Tae Hwan;Seo, Min-Jung;Baek, Seong-Bum;Lee, Jeom-Ho;Moon, Jung-Kyung;Lee, Suk-Ha;Lee, Su-Heon;Lim, Hyoun-Sub;Moon, Jae Sun;Park, Chang-Hwan
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.112-122
    • /
    • 2016
  • Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately $27^{\circ}C$ following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density $(OD)_{600}$ of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.

Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening

  • Choi, Ilyeong;Ahn, Chang Sook;Lee, Du-Hwa;Baek, Seung-A;Jung, Jung Won;Kim, Jae Kwang;Lee, Ho-Seok;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.660-672
    • /
    • 2022
  • The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plant growth and development. Tomato fruit ripening is a complex developmental process promoted by ethylene and specific transcription factors. TORC is known to modulate leaf senescence in tomato. In this study, we investigated the function of TORC in tomato fruit ripening using virus-induced gene silencing (VIGS) of the TORC genes, TOR, lethal with SEC13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR). Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of tomato TORC genes were the highest in the orange stage during fruit development in Micro-Tom tomato. VIGS of these TORC genes using stage 2 tomato accelerated fruit ripening with premature orange/red coloring and decreased fruit growth, when control tobacco rattle virus 2 (TRV2)-myc fruits reached the mature green stage. TORC-deficient fruits showed early accumulation of carotenoid lycopene and reduced cellulose deposition in pericarp cell walls. The early ripening fruits had higher levels of transcripts related to fruit ripening transcription factors, ethylene biosynthesis, carotenoid synthesis, and cell wall modification. Finally, the early ripening phenotype in Micro-Tom tomato was reproduced in the commercial cultivar Moneymaker tomato by VIGS of the TORC genes. Collectively, these results demonstrate that TORC plays an important role in tomato fruit ripening by modulating the transcription of various ripening-related genes.

Physiological Functions of the COPI Complex in Higher Plants

  • Ahn, Hee-Kyung;Kang, Yong Won;Lim, Hye Min;Hwang, Inhwan;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.866-875
    • /
    • 2015
  • COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed ${\alpha}-$, ${\beta}-$, ${\beta}^{\prime}-$, ${\gamma}-$, ${\delta}-$, ${\varepsilon}-$, and ${\zeta}$-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of ${\beta}^{\prime}$-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.