• 제목/요약/키워드: Virus-host interaction

검색결과 49건 처리시간 0.024초

대장균에서 발현된 한탄바이러스 뉴클레오캡시드 단백질의 분리 정제 (Isolation and Purification of Hantaan Viral Nucleocapsid Protein Expressed in Escherichia coli)

  • 노갑수;김종완;하석훈;정근택;문상범;최차용
    • KSBB Journal
    • /
    • 제13권6호
    • /
    • pp.656-661
    • /
    • 1998
  • Hantaan virus belonging to the genus Hantavirus and family Bunyaviridae causes an acute severe illness of human, Haemorrhagic Fever with Renal Syndrome (HFRS). It is a rodent host-borne pathogen and distributed in Asia and Eastern Europe. Hantaviruses have three major antigens, i.e., G1, G2 glycoproteins and nucleocapsid protein (N). Among them, nucleocapsid protein was reported to be the most invaluable antigen as for diagnosis. We have cloned and expressed Hantaan viral nucleocapsid gene in E. coli BL21(DE3). In this study, we have tried to purify the nucleocapsid protein produced by recombinant E. coli, and could attained a purity of >90% by anti-N monoclonal antibody-coupled immunoaffinity chromatography or phenyl sepharose hydrophobic interaction chromatography.

  • PDF

마렉병 바이러스 감염과 병원성 발현 기전 (Infection and Pathogenesis Mechanisms of Marek's Disease Virus)

  • 장형관;박영명;차세연;박종범
    • 한국가금학회지
    • /
    • 제35권1호
    • /
    • pp.39-55
    • /
    • 2008
  • Like the other herpesviruses, the virion of MDV consists of an envelope, which surrounds an amorphous tegument. Within the tegument, and icosahedral capsid encloses a linear double-stranded DNA core. Although the genome structure of MDV indicates that it is an ${\alpha}-herpesvirus$ like herpes simplex and varicella-zoster viruses, biological properties indicate MDV is more akin to the ${\gamma}-herpesvirus$ group, which includes Epstein-Barr and Kaposi's sarcoma herpesviruses. These herpesviruses replicate lytically in lymphocytes, epithelial and fibroblastic cells, and persist in lymphoblastoid cells. MDV has a complex life cycle and uses two means of replication, productive and non-productive, to exist and propagate. The method of reproduction changes according to a defined pattern depending on changes in virus-cell interactions at different stages of the disease, and in different tissues. Productive (lytic) interactions involve active invasion and take-over of the host cell, resulting in the production of infectious progeny virions. However, some herpesviruses, including MDV, can also establish a non-productive (abortive) infection in certain cell types, resulting in production of cell-associated progeny virus. Non-productive interactions represent persistent infection, in which the viral genome is present but gene expression is limited, there is no structural or regulatory gene translation, no replication, no release of progeny virions and no cell death. Reactivation of the virus is rare, and usually the infectious virus can be re-isolated only after cultivation in vitro. MDV establishes latency in lymphoid cells, some of which are subsequently transformed. In this review article, recent knowledges of the pathogenesis mechanisms followed by MDV infection to sensitive cells and chickens are discussed precisely.

오제스키병 바이러스 항원검출을 위한 면역조직화학적 연구 : 전자현미경적 관찰을 위한 초박절편내 protein A-gold labeling (Immunohistochemistry for detection of Aujeszky's disease virus antigens: Protein A-gold labeling of ultrathin sections for electron microscopy)

  • 김순복
    • 대한수의학회지
    • /
    • 제29권4호
    • /
    • pp.541-548
    • /
    • 1989
  • 오제스키병 바이러스를 배양세포에다 감염시켜, 냉동 및 araldite포매 초박절편에서 protein A-gold labeling을 통해 바이러스항원 검출을 시도하였다. 오제스키병 바이러스항원은 10nm gold probes로 표지되었으며, 전자밀도가 높은 gold 입자들은 바이러스의 nucleocapsid와 envelope에서 주로 관찰되었고, 초냉동박절표본에서의 immunogold labeling은 조직구조물들과 극히 미미한 비특이결합만을 보였다. 초냉동박절표본에서의 immunogold labeling은 오제스키병 바이러스항원을 검출하는데 있어 효과적이었으며, 이는 또한 여러가지 바이러스들과 속주세포들간의 상호작용에 관한 면역세포화학적 연구에 크게 이용될 수 있을 것으로 생각된다.

  • PDF

Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Inhibits TBK1 to Evade Interferon-Mediated Response

  • Lee, Jae Kyung;Shin, Ok Sarah
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.226-232
    • /
    • 2021
  • Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus of the Phenuiviridae family that has been circulating in the following Asian countries: Vietnam, Myanmar, Taiwan, China, Japan, and South Korea. Despite the increasing infection rates and relatively high mortality rate, there is limited information available regarding SFTSV pathogenesis. In addition, there are currently no vaccines or effective antiviral treatments available. Previous reports have shown that SFTSV suppresses the host immune response and its nonstructural proteins (NSs) function as an antagonist of type I interferon (IFN), whose induction is an essential part of the host defense system against viral infections. Given that SFTSV NSs suppress the innate immune response by inhibiting type I IFN, we investigated the mechanism utilized by SFTSV NSs to evade IFNmediated response. Our co-immunoprecipitation data suggest the interactions between NSs and retinoic acid inducible gene-I (RIG-I) or TANK binding kinase 1 (TBK1). Furthermore, confocal analysis indicates the ability of NSs to sequester RIG-I and related downstream molecules in the cytoplasmic structures called inclusion bodies (IBs). NSs are also capable of inhibiting TBK1-interferon regulatory factor 3 (IRF3) interaction, and therefore prevent the phosphorylation and nuclear translocation of IRF3 for the induction of type I IFN. The ability of SFTSV NSs to interact with and sequester TBK1 and IRF3 in IBs demonstrate an effective yet unique method utilized by SFTSV to evade and suppress host immunity.

Characterization of Binding Mode of the Heterobiaryl gp120 Inhibitor in HIV-1 Entry: A Molecular Docking and Dynamics Simulation Study

  • Gadhe, Changdev G.;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2466-2472
    • /
    • 2013
  • Human immunodeficiency virus type-1 (HIV-1) is a causative agent of Acquired immunodeficiency syndrome (AIDS), which has affected a large population of the world. Viral envelope glycoprotein (gp120) is an intrinsic protein for HIV-1 to enter into human host cells. Molecular docking guided molecular dynamics (MD) simulation was performed to explore the interaction mechanism of heterobiaryl derivative with gp120. MD simulation result of inhibitor-gp120 complex demonstrated stability. Our MD simulation results are consistent with most of the previous mutational and modeling studies. Inhibitor has an interaction with the CD4 binding region. Van der Waals interaction between inhibitor and Val255, Thr257, Asn425, Met426 and Trp427 were important. This preliminary MD model could be useful in exploiting heterobiaryl-gp120 interaction in greater detail, and will likely to shed lights for further utilization in the development of more potent inhibitors.

Poxvirus 감염(感染)에 있어서의 Virus-숙주세포(宿主細胞)의 상호관계(相互關係) 1. Cowpox Virus-FL 세포계(細胞系)의 세포화학적(細胞化學的) Autoradiography 및 세포면역학적해석(細胞免疫學的解析) (Studies on Host-Virus Interaction of Poxviruses 1. Cytochemical, Autoradiographic and Immunocytological Analysis in Cowpox Virus-FL Cell System)

  • 김우호
    • 대한수의학회지
    • /
    • 제15권1호
    • /
    • pp.57-67
    • /
    • 1975
  • The poxvirus group is considered to be a typical cytoplasmic inclusion forming virus. Every poxvirus has been reported to produce only one kind of inclusion in the infected tissues. A vague concept that inclusions of poxviruses are eosinophilic or acidophilic has prevailed. Although many papers and theories about the nature of the inclusion have been presented, most of them are not quite convincing on the point of the relations with virus multiplication, and an analysis of papers published showed that there seem to be many discrepancies in the descriptions of the nature of the poxvirus inclusions. Comparative studies on host-virus interaction with cowpox, orf, swinepox and fowlpox viruses which selected from each Group (I-IV) of poxviruses were performed from the morphological and virological standpoints. At first, in cowpox virus-FL cell system, as a comparative model, cytoplasmic inclusion, nucleic acid metabolism by autoradiography and detection of viral antigen by immunofluorescence were studied and obtained the results as follows: 1. The focus-like cytopathic effect (CPE) at early stage developed to entire culture at terminal stage of infection, and also the developing status of CPE was correlated to viral doses for inoculation. Two kinds of cytoplasmic inclusions which named A and B type were easily observed by Giemsa, hematoxylin-eosin (H & E) and May-Greenwald Giemsa (MGG) stainings in the infected cells. The B type inclusions were formed at early stage of infection and the A type inclusions were produced subsequently the B type formation. The B type which common type inclusion in poxviruses was a small compact or aggregate at early stage and developed to a large diffuse body at terminal stage of infection. On the other hand, the A type inclusion which depend upon the kind of virus was appeared as round and discrete shape, and its size and number was increased gradually during the culture period. It was characteristic to form distinct halos around the both types of inclusions in acid fixed, H & E stained preparations of infected cultures. The B type inclusion was always positive in Feulgen reaction and showed as DNA containing body but the A type inclusion was not. 2. In the relationship between inclusion and DNA metabolism of infected cells by the qualitative autoradiography using 3H-thymidine, the appearance of silver grains was coincided with B type inclusion but not with A type inclusion. This showed that the DNA synthesis was proceeded in all B type inclusions except those in the terminal stage with a diffuse form. This suggested that the B type inclusions are only sites of DNA synthesis and this was proceeded after the cell infection independently. The activity of DNA synthesis of the inclusions was nearly the same as that of the nucleic of normal cells and non-inclusion bearing cells. and non-inclusion bearing cells. Regardless of the size of the degree of DNA synthesis of the B type inclusion, inclusion bearing cells all showed remarkable suppression of nuclear DNA synthesis. 3. By the direct fluorescent antibody technique viral antigen in infected cells was detected. The B type inclusions have been proved to contain a great deal of viral antigen, whereas the basic substance of A type inclusion did not show antigenicity except the round edge. It was suggested that the round edge fluorescence might be caused by the glare of cytoplasmic viral antigen which pushed out and concentrated by the A type inclusion development. 4. Hemorrhagic red pock formations on chorioallantoic membrane of embryonated chicken egg had proved the characteristic of used viral strain. 5. By the above studies on the nature of two types of inclusions and the role they play in virus multiplication, it was concluded that the B type inclusion must be the site of the synthesis of viral DNA and protein as well as the site of the virus.

  • PDF

Complete genome sequence of Fusarium hypovirus DK2l strain and genomic diversity of dsRNA mycoviruses isolated from Fusarium graminearum

  • Lim, Won-Seok;Chu, Yeon-Mee;Lee, Yin-Won;Kim, Kook-Hyung
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.117.3-118
    • /
    • 2003
  • We tested for the presence of double-stranded RNA (dsRNA) mycovirus in 827 Fusarium graminearum isolated from diseased barley and maize. dsRNA mycoviruses with various sizes were isolated. Of them, it was previously reported that dsRNA from DK2l isolate had pronounced morphological changes, including reduction in mycelial growth, increased to red pigmentation, reduced virulence and sporulation. (Chu et al., Appl. Environ. Microbiol. 2002). For better understanding of this hypovirulence associated with DK2l dsRNA virus, we determined the complete nucleotide sequence of dsRNA genome and named Fusarium hypovirus DK2l strain (Fhv-DK2l ). Genomic RNA of Fhv-DK2l was determined to be 6625 nucleotides in length excluding the poly (A) tail and contained three putative open reading frame. RNA-dependent RNA polymerase (RdRp) and helicase domain were expected in ORF A, 54 to 4709 nucleotide position. ORE B, 4752 to 5216 nucleotide position, and ORF C, 5475 to 6578 nucleotide position, were predicted to encode 16.7kDa and 41.3kDa protein respectively each. We could not detect any conserved domains from these two proteins. Phylogenetic analysis showed Fhv-DK2l was related to Cryphonectria hypovirus 3. Ten additional isolates were found that were infected with dsRNA mycoviruses. These mycoviruses contain 2 to 4 different segments of dsRNAs with the size range of approximately 1.7 to 10-kbp in length. The presence of dsRNAs isolates did not affect colony morphology and were transmissible through conidia and ascospore with incidence of 30-100%. These results indicate that there is genomic diversity of dsRNA mycoviruses that infect F. graminearum isolates and that impact of virus infection on host's morphology and virulence is determined by the interaction between dsRNAs and the fungal host, not by the mere presence of the dsRNAs

  • PDF

Inhibition of caspase-1-dependent apoptosis suppresses peste des petits ruminants virus replication

  • Lingxia Li;Shengqing Li;Shengyi Han;Pengfei Li;Guoyu Du;Jinyan Wu;Xiaoan Cao;Youjun Shang
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.55.1-55.12
    • /
    • 2023
  • Background: Peste des petits ruminants (PPR), caused by the PPR virus (PPRV), is an acute and fatal contagious disease that mainly infects goats, sheep, and other artiodactyls. Peripheral blood mononuclear cells (PBMCs) are considered the primary innate immune cells. Objectives: PBMCs derived from goats were infected with PPRV and analyzed to detect the relationship between PPRV replication and apoptosis or the inflammatory response. Methods: Quantitative real-time polymerase chain reaction was used to identify PPRV replication and cytokines expression. Flow cytometry was conducted to detect apoptosis and the differentiation of CD4+ and CD8+ T cells after PPRV infection. Results: PPRV stimulated the differentiation of CD4+ and CD8+ T cells. In addition, PPRV induced apoptosis in goat PBMCs. Furthermore, apoptosis and the inflammatory response induced by PPRV could be suppressed by Z-VAD-FMK and Z-YVAD-FMK, respectively. Moreover, the virus titer of PPRV was attenuated by inhibiting caspase-1-dependent apoptosis and inflammation. Conclusions: This study showed that apoptosis and the inflammatory response play an essential role in PPR viral replication in vitro, providing a new mechanism related to the cell host response.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • 제34권5호
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.

Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato

  • Sahin-Cevik, Mehtap;Sivri, Emine Dogus;Cevik, Bayram
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.257-273
    • /
    • 2019
  • Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.