• Title/Summary/Keyword: Virus replication

Search Result 365, Processing Time 0.034 seconds

Naturally occurring reoviruses for human cancer therapy

  • Kim, Manbok
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.454-460
    • /
    • 2015
  • Naturally occurring reoviruses are live replication-proficient viruses that specifically infect human cancer cells while sparing their normal counterpart. Since the discovery of reoviruses in 1950s, they have shown various degrees of safety and efficacy in pre-clinical or clinical applications for human anti-cancer therapeutics. I have recently discovered that cellular tumor suppressor genes are also important in determining reoviral tropism. Carcinogenesis is a multi-step process involving the accumulation of both oncogene and tumor suppressor gene abnormalities. Reoviruses can exploit abnormal cellular tumor suppressor signaling for their oncolytic specificity and efficacy. Many tumor suppressor genes such as p53, ataxia telangiectasia mutated (ATM), and retinoblastoma associated (RB) are known to play important roles in genomic fidelity/maintenance. Thus, a tumor suppressor gene abnormality could affect host genomic integrity and likely disrupt intact antiviral networks due to the accumulation of genetic defects which in turn could result in oncolytic reovirus susceptibility. This review outlines the discovery of oncolytic reovirus strains, recent progresses in elucidating the molecular connection between oncogene/tumor suppressor gene abnormalities and reoviral oncotropism, and their clinical implications. Future directions in the utility of reovirus virotherapy is also proposed in this review. [BMB Reports 2015; 48(8): 454-460]

Expression and Characterization of RNA-dependent RNA Polymerase of Dendrolimus punctatus Tetravirus

  • Zhou, Liang;Zhang, Jiamin;Wang, Xiaochun;Jiang, Hong;Yi, Fuming;Hu, Yuanyang
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.571-577
    • /
    • 2006
  • Dendrolimus punctatus tetravirus (DpTV) has been identified as a new member of the genus Omegatetravirus of the family Tetraviridae that may be related serologically to Nudaurelia capensis virus ($N{\omega}V$). To establish the function of DpTV RNA genome and to better understand the mechanism of viral replication, the putative RNA-dependent RNA polymerase (RdRp) domain has been cloned and expressed in Escherichia coli. The recombinant protein was purified on a Ni-chelating HisTrap affinity column and demonstrated to initiate viral RNA synthesis in a primer-independent manner but not by terminal nucleotidyle transferase activity in the presence of $Mg^{2+}$ and RNA template. Mutation of the GDD to GAA interferes with the residues at the polymerase active site and metal ions, and thus renders the polymerase inactive.

AltMV TGB1 Nucleolar Localization Requires Homologous Interaction and Correlates with Cell Wall Localization Associated with Cell-to-Cell Movement

  • Nam, Jiryun;Nam, Moon;Bae, Hanhong;Lee, Cheolho;Lee, Bong-Chun;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.454-459
    • /
    • 2013
  • The Potexvirus Alternanthera mosaic virus (AltMV) has multifunctional triple gene block (TGB) proteins, among which our studies have focused on the properties of the TGB1 protein. The TGB1 of AltMV has functions including RNA binding, RNA silencing suppression, and cell-to-cell movement, and is known to form homologous interactions. The helicase domains of AltMV TGB1 were separately mutated to identify which regions are involved in homologous TGB1 interactions. The yeast two hybrid system and Bimolecular Fluorescence Complementation (BiFC) in planta were utilized to examine homologous interactions of the mutants. Helicase motif I of AltMV TGB1 was found to be critical to maintain homologous interactions. Mutations in the remaining helicase motifs did not inhibit TGB1 homologous interactions. In the absence of homologous interaction of TGB1, subcellular localization of helicase domain I mutants showed distinctively different patterns from that of WT TGB1. These results provide important information to study viral movement and replication of AltMV.

Parametric Analysis on the Viral Infection in The Rat Circardian Control Center (흰쥐의 일주기조절중추내 바이러스 감염에 대한 매개변수 분석)

  • Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 1998
  • The neurotropic psudorabies virus(PRV) to replicate within neurons is very useful pathogen for neuronal tracing. I carried out this study to investigate the parametric analysis on the viral infection in the rat circadian control center with two genetically engineered strains out of PRV. The two strains are isogenic with the attenuated Bartha strain of PRV ; in one strain a lacZ reporter gene was inserted into the gC locus (PRV-BaBlu ; $4.75\times10^8pfu/ml$) and the other strain contained a PRV envelope glycoprotein gene(PRV-D ; $2.5\times10^8pfu/ml$) theat is absent in PRV-BaBlu. simultaneous or temporally separated sequential injection of$2{\mu}l$ of each strain into the vetreous body of eye produced a course of transsynaptic infection of retinohypothalamic circuitry. The results were as follows; 1. PRV-BaBlu and PRV-D infected the suprachiasmatic nucleus in hypothalamus and intergeniculate leaflet in lateral geniculate nucleus of thalamus. 2. The rate of PRV infection was dependent upon PRV strain. 3. Pre-infected neurons by PRV-D were interfered with the replication of PRV-BaBlu. 4. Dual injection of PRV-D and PRV-BaBlu showed more virulent than the parental strain.

  • PDF

Cancer-Specific Induction of Adenoviral E1A Expression by Group I Intron-Based Trans-Splicing Ribozyme

  • Won, You-Sub;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.431-435
    • /
    • 2012
  • In this study, we describe a novel approach to achieve replicative selectivity of conditionally replicative adenovirus that is based upon trans-splicing ribozyme-mediated replacement of cancer-specific RNAs. We developed a specific ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to induce adenoviral E1A gene expression selectively in cancer cells that express the RNA. Western blot analysis showed that the ribozyme highly selectively triggered E1A expression in hTERT-expressing cancer cells. RT-PCR and sequencing analysis indicated that the ribozyme-mediated E1A induction was caused via a high fidelity trans-splicing reaction with the targeted residue in the hTERT-expressing cells. Moreover, reporter activity under the control of an E1A-dependent E3 promoter was highly transactivated in hTERT-expressing cancer cells. Therefore, adenovirus containing the hTERT RNA-targeting trans-splicing ribozyme would be a promising anticancer agent through selective replication in cancer cells and thus specific destruction of the infected cells.

Hepatoprotective and a Potential Antiviral Effect of Biphenyl Dimethyl Dicarboxylate/Amantadine for an Acute Viral Hepatitis Induced by MHV-2 in ICR Mice (마우스 간염바이러스(MHV-2)에 의해 유발된 전격성 바이러스간염에 대한 비페닐메칠디카르복실레이트/아만타딘제제의 간보호 및 잠재적 항바이러스효과)

  • Joo, Seong-Soo;Chin, Hyouk-Jun;Won, Tae-Joon;Jang, Su-Kil;Hwang, Kwang-Woo;Lee, Do-Ik
    • YAKHAK HOEJI
    • /
    • v.51 no.3
    • /
    • pp.194-198
    • /
    • 2007
  • The mouse hepatitis virus (MHV-2) induces broad collapses, focal necrosis and cytolysis of hepatocytes, and leads to death after three to five days of intraperitoneal injection in mice. The present study investigated whether the combinatorial treatment of dimethyl dicarboxylate/amantadine (2:1) showed hepatoprotective and/or antiviral properties in MHV-2 infected ICR mice. In the study, we found that dimethyl dicarboxylate/amantadine group (VDDBA) increased the survival rate (30.8%) when compared to positive control, VL (7.7%) and that VDDBA lengthened the survival time (4.2 d)after MHV-2 infection. In addition, ALT and AST were well regulated when treated with VDDBA (p<0.01). Finally, we concluded that those results were probably from the inhibition of viral replication and at least antiproliferative effect on MHV-2.

Transfection and Expression of Reconstructed Genes within Baculoviral Vectors (Baculovirus 벡터내 재구성된 유전자의 전이와 발현)

  • Sa, Young-Hee;Choi, hang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.588-591
    • /
    • 2018
  • Baculovirus was originally isolated from the alfalfa looper and contains a 134-kbp genome with 154 open reading frames (ORF). The major capsid protein VP39 together with some minor proteins forms the nucleocapsid ($21nm{\times}260nm$) that encloses the DNA with p6.9 protein. They are double-stranded, circular, supercoiled DNA molecules in a rod-shaped capsid. Wild-type baculoviruses exhibit both lytic and occluded life cycles that develop independently throughout the three phases of virus replication. Recombinant baculoviruses can transfer their vectors and express their recombinant proteins in a wide range of mammalian cell types. Especially, inclusion of a dominant selectable marker in these baculoviral vectors can express diverse recombinant genes in many cells. Baculoviral vectors were reconstructed with cytomegalovirus (CMV) promoter,uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), protein transduction domain (PTD) gene and so on. These reconstructed vectors were infected into various cell and cell lines. We performed transfection and expression of these recombinant vectors comparison with other control vectors. From this study, we knew that transfection and expression of these recombinant vectors have higher efficacy than any control vector. This work was supported by a grant from Mid-Career Researcher Program(NRF-2016R1A2B4016552) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(MSIP).

  • PDF

Inhibition of HBV replication and gene expression in vitro and in vivo with a single AAV vector delivering two shRNA molecules

  • Li, Zhi;He, Ming-Liang;Yao, Hong;Dong, Qing-Ming;Chen, Yang-Chao;Chan, Chu-Yan;Zheng, Bo-Jian;Yuen, Kwok-Yung;Peng, Ying;Sun, Qiang;Yang, Xiao;Lin, Marie C.;Sung, Joseph J.Y.;Kung, Hsiang-Fu
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • Hepatitis B virus (HBV) infection is highly prevalent worldwide. The major challenge for current antiviral treatment is the elevated drug resistance that occurs via rapid viral mutagenesis. In this study, we developed AAV vectors to simultaneously deliver two or three shRNAs targeting different HBV-related genes. These vectors showed markedly better antiviral effects than ones that delivered a single shRNA in vitro. A dual shRNA expression vector (AAV-157i/1694i), which simultaneously expressed two shRNAs targeted the S and X genes of HBV, reduced HBsAg, HBeAg and HBV DNA levels by $87{\pm}4$, $80.3{\pm}2.6$ and $86.2{\pm}7%$ respectively, eight days post-transduction. In a mouse model of prophylactic treatment, HBsAg and HBeAg were reduced to undetectable levels and the serum HBV DNA level was reduced by at least 100 fold. These results indicate that AAV-157i/1694i generates potent anti-HBV effects and that the strategy of constructing multi-shRNA expression vectors may lead to enhanced anti-HBV efficacy and overcome the evading mechanism of the virus and thus the development of drug resistance.

Double Mutations in eIF4E and eIFiso4E Confer Recessive Resistance to Chilli Veinal Mottle Virus in Pepper

  • Hwang, JeeNa;Li, Jinjie;Liu, Wing-Yee;An, Song-Ji;Cho, Hwajin;Her, Nam Han;Yeam, Inhwa;Kim, Dosun;Kang, Byoung-Cheorl
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.329-336
    • /
    • 2009
  • To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinal mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum 'Dempsey' containing an elF4E mutation ($pvr1^2$) and C. annuum 'Perennial' containing an elFiso4E mutation (pvr6). C. annuum 'Dempsey' was susceptible and C. annuum 'Perennial' was resistant to ChiVMV. All $F_1$ plants showed resistance, and $F_2$ individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five $F_2$ and 329 $F_3$ plants of 17 families were genotyped with $pvr1^2$ and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both $pvr1^2$ and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in elF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of $F_2$ plants revealed that all plants containing homozygous genotypes of both $pvr1^2$ and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of elF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper.

Transgenic Plants Expressing an Antisense RNA of ALl-Gene from Tomato Golden Mosaic Virus(TGMV) (Tomato Golden Mosaic Virus(TGMV) AL1 -gene의 antisense RNA 발현 형질 전환 식물체)

  • 임성렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.147-152
    • /
    • 1998
  • AL1-gene, necessary for the replication of the genome of a gemini virus TGMV, was inserted in the opposite direction to the promoter CaMV35S resulting in the construction of a plant transformation binary vector pAR35-2. The vector pAR35-2 contains the chimeric gene cassette involving the duplicated promoter CaMV35S, opposite direction of AL1-gene fusioned with hygromycin resistant gene, and the gene cassette of the neomycin phosphotransferase II gene. The plasmid was transferred to tobacco and tomato plants by leaf disk infection via Agrobacterium. The transgenic plants were selected and grown on the MS-agar medium containing kanamycin and hygromycin. The shoots induced from the calli were regenerated to the whole transgenic plants. The antisense AL1-gene was detected in the genomic DNA isolated from the leaves by using the PCR mediated Southern blot analysis. The expression of the antisense AL1-gene was also observed using the RT-PCR mediated Southern blot analysis. The observation of chloroplasts in guard cell pair indicated that the transgenic tomato plants were diploid.

  • PDF