• Title/Summary/Keyword: Virus culture

Search Result 438, Processing Time 0.035 seconds

Introduction of two-step culture method for multiple seed bulb development from shoot tip culture of garlic (Allium sativium L.) (마늘의 경정배양에서 기내인경구 대량생산을 위한 2단계 배양의 도입)

  • Hwang, Hye-Yeon;Lee, Young-Bok
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • In vitro culture of shoot tip of garlic (Allium sativium L. cv. Seosan) was carried out to find medium condition of the induction of multiple shoots and bulbing for muliproduction of virus-free seed bulbs. For this work, tank culture was introduced. In shoot tip culture on MS solid medium the induction of multiple shoots and bulbing were better by adding 3% sucrose than 8%. Supplementation with 2mg/L 2ip and 0.2 mg/L IAA in this medium was effective. Three point three shoots including 2.7 bulbs were formed from a shoot tip after cultivation for 30 days on this medium. Bulbing of garlic in liquid culture with plastic water tank of 20L supplied air at the side of the lower part was better by adding 3% sucrose than 8% by subculture for 45 days with shoots obtained from shoot tip culture for 30 days on soid MS medium. Shoot growth was vigorous at 3% sucrose however bulb growth was more effective on the medium of 8% sucrose. Because of the effectiveness on solid medium added 3% sucrose, 2 mg/L 2ip and 0.2 mg/L IAA for initial production of multi-shoot in stem tip culture and the effectiveness in liquid culture with water tank for growth of bulbs, the method of two-step culture could be introduced for the multiple production of seed bulb of high quality. It was more desirable by supply of 0.2 mg/L BA and 0.02 mg/L NAA at tank culture time. But growth of the bulbs became poor by increasing concentration of NAA of the medium.

The Effect of Nutrient Solution Concentration on Growth of Potato Plantlet in Microponic System (Microponic system에서 배양액의 농도변화가 감자 소식물체 생육에 미치는 영향)

  • Ko, Sun A;Choi, Ki Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.144-147
    • /
    • 2014
  • It was intended to closely examine an effect that a change in the concentration of culture medium had on the potato(Solanum tuberosum L.) plantlet growth in the microponic system so as to mass-produce the virus-free plant of new variety 'Saebong' for potato processing. The adjusted concentration of potato culture medium was 0.2, 0.6, 1.0, 1.4, 1.8, and $14.0dS{\cdot}m^{-1}$. And potato seedling was cut into pieces of 1.5 cm in length, which included 2 growth points and leaves. And each was explanted in glass vial of 50 mL. And experiments were carried out twice for 18 days or 21days. Culture medium of 2ml was put in the container respectively. And 1 mL was added after 10 days. And in terms of cultivation environment, the experiment was carried out at the day length of 16 hours at the temperature of $23{\pm}1^{\circ}C$ under the white LED light of $40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The concentration of culture medium in the experiment I was EC 0.2, 1.0, $14dS{\cdot}m^{-1}$ and was adjusted to 0.6, 1.0, 1.4, $1.8dS{\cdot}m^{-1}$ in the experiment II. The results showed that the survival rate of plantlet was 90% at $0.2dS^2m^{-1}$, 100% at $0.6dS^2m^{-1}$, 100% at $1.0dS^2m^{-1}$. 0% at $1.4dS{\cdot}m^{-1}$, 0% at $1.8dS{\cdot}m^{-1}$. and 0% at $14.0dS{\cdot}m^{-1}$ after 7 days. With regard to the explanted potato seedling, in case of the treatment where the electrical conductivity of culture medium was adjusted to $1.0dS{\cdot}m^{-1}$, root developed 2 days after transplantation. And the plantlet vigorously grew into strong plant that had 7 leaves, length of 5cm, and fresh weight of 0.5 g after 18 days. In case of the treatment where the concentration of culture medium was adjusted to $0.6dS{\cdot}m^{-1}$, the root plantlets developed 4 days after transplantation. And those grew into plant that had 7 leaves and fresh weight of 0.2 g after 21 days. Therefore, we found that it is effective to control potato culture medium by adjusting its electrical conductivity to $0.6{\sim}1.0dS{\cdot}m^{-1}$ for the mass production of virus-free potato seedling in the microponic system.

Real-Time RT-PCR for Validation of Reovirus Type 3 Safety During the Manufacture of Mammalian Cell Culture-Derived Biopharmaceuticals (세포배양 유래 생물의약품 생산 공정에서 Reovirus Type 3 안전성 검증을 위한 Real-Time RT-PCR)

  • Lee, Dong-Hyuck;Jeong, Hyo-Sun;Kim, Tae-Eun;Oh, Seon-Hwan;Lee, Jung-Suk;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.228-236
    • /
    • 2008
  • Validation of viral safety is essential in ensuring the safety of mammalian cell culture-derived biopharmaceuticals, because numerous adventitious viruses have been contaminated during the manufacture of the products. Mammalian cells are highly susceptible to Reovirus type 3 (Reo-3), and there are several reports of Reo-3 contamination during the manufacture of biopharmaceuticals. In order to establish the validation system for the Reo-3 safety, a real-time RT-PCR method was developed for quantitative detection of Reo-3 in cell lines, raw materials, manufacturing processes, and final products as well as Reo-3 clearance validation. Specific primers for amplification of Reo-3 RNA was selected, and Reo-3 RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $3.2{\times}10^0\;TCID_{50}/ml$. The real-time RT-PCR method was proven to be reproducible and very specific to Reo-3. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with Reo-3. Reo-3 RNA could be quantified in CHO cell as well as culture supernatant. When the real-time RT-PCR assay was applied to the validation of virus removal during a virus filtration process, the result was similar to that of virus infectivity assay. Therefore, it was concluded that this rapid, specific, sensitive, and robust assay could replace infectivity assay for detection and clearance validation of Reo-3.

Large-scale Culture of Plant Cell and Tissue by Bioreactor System

  • Son, Sung-Ho;Park, Sung-Mee;Park, Seung -Yun;Kwon, Oh-Woung;Lee, Yun-Hee;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Large-scale cultures of plant cell, tissue, and organ have been achieved by using BTBB. When different sized BTBBs (5 L, 20 L, 100 L, 300 L, and 500 L) were tested for the culture of yew cells (Taxus cuspidata Sieb. et Zucc.), cell growth increment reached to 94.5% in SCV after 24 days of culture with 30% of inoculation cell density. However, there were some variations in the production of taxol and its derivatives among the BTBBs of different size. Approximate 4 ㎎/l of taxol and 84 ㎎/l of total taxanes were obtained by using a 500L BTBB after 6 weeks of culture. With a 20L BTBB, about 20,000 cuttings of virus-free potatoes (cv. Dejima) could be obtained by inoculating 128 explants and maintaining 8 weeks under 16 hr light illumination. The frequency of ex vitro rooting of the cuttings revealed as more than 99% under 30% shade. By incorporating two-stage culture process consisting of multiple bulblet formation in solid medium and bulblet development in liquid medium, mass propagation of lily through bioreactor seemed to be possible. In the case of 'Marcopolo', the growth of mini-bulblets in BTBB was nearly 10 folds faster than that of the solid medium. Time course study revealed that maximum MAR yield of ginseng (Panax ginseng C. A. Meyer) in a 5 L and 20 L BTBB after 8 weeks of culture was 500 g and 2.2 ㎏, respectively. By cutting the MAR once and/or twice during the culture, the yield of root biomass could be increased more than 50% in fresh weight at the time of harvest. With initial inoculum of 500 g of sliced MAR in a 500 L BTBB, 74.8 ㎏ of adventitious root mass was obtained after 8 weeks of culture. The average content of total ginseng saponin obtained from small-scale and/or pilotscale BTBBs was approximately 1% per gram dry weight. Based on our results, we suggest that large-scale cultures of plant cell, tissue, and organ using BTBB system should be quite a feasible approach when compared with conventional method of tissue culture.

  • PDF

Systematic Propagation of High Quality Garlic (Allium sativum L.) Through Shoot Apical Meristem Culture 1. Organogenesis from in Vitro Cultured Shoot-tips (생장점배양에 의한 우량마늘 체계적 증식 1.생장점배 양으로부터 기관형성)

  • Lee, Eun-Mo;Lee, Young-Bok
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.3
    • /
    • pp.161-166
    • /
    • 1994
  • Since garlics (Allium sativum L.) are propagated through cloves, infection by virus or other pathogens may become severe problem if not using high quality seed bulbs every year resulting in the reduction of yield and bulb quality, In order to solve this problem, the establishment of virus-free bulb production and its supply system have been required because no chemicals were found to eliminate viruses from seed bulbs. This experiment was conducted to develop an effective production technique of high quality seed bulbs using shoot-tip culture. Over 90% of shoot-tips explanted on January L 1990 were survived at constant temperature of either 20, 24 or 28$^{\circ}C$, wheres 88% at alternate temperature (28/20$^{\circ}C$). The growth of shoot and root was most vigorous at constant 24$^{\circ}C$, and least at alternate temperature (28/20$^{\circ}C$) condition. When shoot-tips were explanted June 21 to August 1,1991, survival and growth of shoot-tips was most vigorous on MS medium supplymented with 0.1 mg/L NAA and 2 mg/L kinetin and least 1 mg/L Gh$_3$. The shoot-tips taken from the seed bulbs stored at 4$^{\circ}C$ for 15 to 60 days were placed on MS medium, shoot growth and in vitro bulblet formation increased slightly as affected by the increase of told treatment period at 4$^{\circ}C$.

  • PDF

Cell Culture Models of Human Norovirus: the End of the Beginning? (인간노로바이러스의 세포배양 기술개발 : 새로운 시작?)

  • Nguyen, Minh Tue;Park, Mi-Kyung;Ha, Sangdo;Choi, In-Soo;Choi, Changsun;Myoung, Jinjong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.93-100
    • /
    • 2017
  • Human norovirus (hNoV) infection accounts for the vast majority of virus-mediated gastroenteritis cases worldwide. It causes self-limiting acute illnesses in healthy individuals lasting for a few days, however, in immunocompromised patients, hNoV can establish chronic and potentially fatal infections. Since its discovery in 1968, much effort had been made to develop cell culture and animal infection models to no avail. Only recently, some promising breakthroughs in the development of in vitro infection models have been made. Here, we will contrast and compare those models and discuss what further needs to be done to develop a reliable and robust cell culture model.

Selective Predatory Effect of River Puffer on WSSV-infected Shrimp in Culture of Shrimp with River Puffer under Laboratory Scale (황복과 새우의 복합사육시 황복에 의한 흰반점바이러스(WSSV) 감염 새우의 선택적 포식 효과)

  • Jang, In-Kwon;Cho, Yeong-Rok;Lee, Jae-Yong;Seo, Hyung-Chul;Kim, Bong-Lae;Kim, Jong-Sheek;Kang, Hee-Woong
    • Journal of Aquaculture
    • /
    • v.20 no.4
    • /
    • pp.270-277
    • /
    • 2007
  • White spot syndrome virus (WSSV) which is the most serious threat to cultured shrimp around the world has given enormous economic damages to shrimp culture industry every year since it was found from the shrimp ponds in the west coast of the South Korea in 1993. WSSV has strong infectivity as well as virulence and it can be rapidly transmitted among shrimps in ponds by cannibalism of infected ones. Polyculture of shrimps with carnivorous fish has been applied in commercial shrimp farms to suppress or delay the viral outbreak because the fish may selectively eat the moribund shrimps infected by virus. To determine the selective predatory effect of a carnivorous fish, river puffer Takifugu obscurus on white shrimp Litopenaeus vannamei, polyculture trials in laboratory scale of WSSV-infected and non-infected shrimps with river puffer were conducted in concrete round tanks of $28.26\;m^2$ in surface area as followings: 1) juvenile shrimps (B. W. 0.62 g) with 5 months old puffer (B. W. 11.60 g) cultured for 8 days, and 2) sub-adult shrimps (B. W. 6.84 g) with 16 months old puffer (B. W. 85.82 g) cultured for 5 days in order to know the effects according to size difference of cultured animals. In polyculture of juvenile shrimp with 5 months old puffer, survival rates of infected and non-infected shrimps were 46.0% and 89.1% respectively and in that of sub-adult shrimp with 16 months old puffer those were4% and 48% respectively. The results showed that puffer tends to selectively prey on virus infected shrimps among infected and non-infected ones in a limited space with although there is difference in predatory rate with age and density of animals. Regardless of different densities and ages of animals as well as health condition of shrimps, however, there were low differences in daily biomass of shrimp consumed per kg body weight of puffer. This finding suggests that puffer preys on healthy shrimps when moribund shrimps were not sufficient. Therefore, farmers should consider the total biomass of puffer as well as density and stocking time when they stock puffer into shrimp ponds for polyculture.

Elimination of Apple stem grooving virus from 'Mansoo' pear (Pyrus pyrifolia L.) by an antiviral agent combined with shoot tip culture (항바이러스제 처리와 경정배양에 의한 배(Pyrus pyrifolia L.) '만수'의 Apple stem grooving virus 무병화)

  • Cho, Kang Hee;Shin, Juhee;Kim, Dae-Hyun;Park, Seo Jun;Kim, Se Hee;Chun, Jae An;Kim, Mi Young;Han, Jeom Hwa;Lee, Han Chan
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.391-396
    • /
    • 2016
  • In this study, in vitro-cultured 'Mansoo' pear (Pyrus pyrifolia L.) plants infected with Apple stem grooving virus (ASGV) were used for testing the efficiency of the virus elimination methods. The shoot tips cut from infected plants were treated by thermotherapy ($37^{\circ}C$), cold therapy ($4^{\circ}C$), chemotherapy with ribavirin, and combination of these methods. Treatment periods were 2, 4, and 8 weeks, and concentrations of ribavirin were 20 and $40mg{\cdot}L^{-1}$. The efficiency of ASGV elimination was evaluated by reverse transcription polymerase chain reaction. The shoot survival rate was the highest at 100% after cold therapy, chemotherapy, and combination of two methods, while the rate was the lowest at 33.3% after thermotherapy for 2 weeks. The shoot survival rate after chemotherapy decreased gradually as the treatment period was prolonged. The ASGV elimination rate was the highest at 100% after ribavirin treatment at a concentration of $40mg{\cdot}L^{-1}$ and combination of ribavirin treatment and thermotherapy for 2 weeks, whereas the ASGV elimination rate after cold therapy was the lowest at 16.7%. However, the efficiency of ASGV elimination was enhanced up to 43.3% by the combination of cold therapy and ribavirin treatment. The efficiency of ASGV elimination for all treatments was increased as the treatment period was prolonged. Based on these results, we suggest that ribavirin treatment at a concentration of $20mg{\cdot}L^{-1}$ for 4 weeks or at a concentration of $40mg{\cdot}L^{-1}$ for 2 weeks combined with shoot tip culture was efficient for the elimination of ASGV from pear.

Sequence and Phylogenetic Analysis of Respiratory Syncytial Virus Isolated from Korea (국내에서 유행한 Respiratory Syncytial 바이러스의 염기서열 및 계통분석)

  • Kwon, Soon-Young;Choi, Young-Ju;Kim, So-Youn;Song, Ki-Joon;Lee, Yong-Ju;Choi, Jong-Ouck;Seong, In-Wha
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.9-22
    • /
    • 1996
  • Respiratory Syncytial virus (RSV) is an important cause of acute lower respiratory tract infections in human, with infants and young children being particularly susceptible. In the temperate zones, sharp annual outbreaks of RSV occur during the colder months, in both the northern and the southern hemisphere. RSV is unusual in that it can repeatedly reinfect individuals throughout life and infect babies in the presence of maternal antibody. RSV isolates can be divided into two subgroups, A and B, on the basis of their reactions with monoclonal antibodies, and the two subgroups are also distinct at the nucleotide sequence level. The specific diagnosis of RSV infection was best made by isolation of virus in tissue culture, identification of viral antigen, or by specific serologic procedures. Recently, rapid detection of RSV and analysis of RSV strain variation became possible by development of methods of reverse transcription and polymerase chain reaction amplification. In this study, to determine the genetic diversity of RSV found in Korea, 173 bp and 164 bp spanning selected regions of the RSV F and SH genes were enzymatically amplified and sequenced, respectively. Eight for F gene and three for SH gene were detected in 66 nasopharyngeal swap samples tested. Two major antigenic subgroups, A and B were confirmed from Korean samples (seven for subgroup A and one for subgroup B). At the nucleotide level of the F gene region, Korean subgroup A strains showed 95-99% homologies compared to the prototype A2 strain of subgroup A and 93-100% homologies among Korean subgroup A themselves. For the SH gene region, Korean subgroup A strain showed 97.5% homology compared to the prototype A2 strain of subgroup A, and Korean subgroup B strain showed 97% homology compared to the prototype 18537 strain of subgroup B. Most of base changes were transition and occured in codon position 3, which resulted in amino acid conservation. Using the maximum parsimony method, phylogenetic analysis indicated that Korean RSV strains formed a group with other RSV strains isolated from the United States, Canada, the Great Britain and Australia.

  • PDF

Quantification of White Spot Syndrome Virus (WSSV) in Seawaters Using Real-Time PCR and Correlation Analyses between WSSV and Environmental Parameters (Real-Time PCR을 이용한 해수 존재 흰반점 바이러스의 정량 및 양식 환경인자와의 상관관계 분석)

  • Song, Jae-Ho;Choo, Yoe-Jin;Cho, Jang-Cheon
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • White Spot Syndrome Virus (WSSV) is one of the most virulent viral agents in the penaeid shrimp culture industry. In this study, WSSV in a Fenneropenaeus chinensis shrimp farm and an adjacent seawater were concentrated using a membrane filtration and quantified using the quantitative real-time PCR (QRT-PCR) method with newly designed primers and Taqman probe. Sensitivity of primers and probe was proven by WSSV standard curve assay in QRT-PCR. In order to demonstrate the relationship between WSSV and environmental parameters, physicochemical and biological parameters of the farm and influent seawaters were monitored from June to September, 2007. The abundance of WSSV ranged 3,814-121,546 copies per 1 liter of seawater, which was correlated with fecal enterococci ($r^2=0.9$, p=0.02), chlorophyll ${\alpha}$ ($r^2=0.8$, p=0.03) and $BOD_5$ ($r^2=0.8$, p=0.07). Subsequently, it is concluded that the QRT-PCR method using Taqman probe established in this study was efficient to clarify the quantification of WSSV in seawaters. Statistical analyses of environmental parameters obtained in this study also showed that the abundance of WSSV was correlated with several biological parameters rather than physicochemical parameters.