• 제목/요약/키워드: Virtual-Mass Method

검색결과 91건 처리시간 0.022초

일차-홀드 방법이 가상 질량-스프링 모델의 안정성 영역에 미치는 영향에 대한 연구 (A Study on the Effect of First-order Hold Method on the Stability Boundary of a Virtual Mass-spring Model)

  • 이경노
    • 융복합기술연구소 논문집
    • /
    • 제10권1호
    • /
    • pp.41-45
    • /
    • 2020
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system with first-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. When first-order-hold is applied, we analyze the stability boundary of the virtual spring through the simulation according to the virtual mass and the sampling time. As the virtual mass increases, the stability boundary of the virtual spring gradually increases and then decreases after reaching the maximum value. The results are compared with the stability boundary in the haptic system with zero-order-hold. When a virtual mass is small, the stability boundary of a virtual spring in the system with first-order-hold is larger than that in the system with zero-order-hold.

Research on total resistance of ice-going ship for different floe ice distributions based on virtual mass method

  • Guo, Wei;Zhao, Qiao-sheng;Tian, Yu-kui;Zhang, Wan-chao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.957-966
    • /
    • 2020
  • This paper presents the virtual mass method to implement the prediction of total resistance for ice-going ship in floe ice region based on the combined method of CFD and DEM. Two ways of floe ice distribution are adopted for the analysis and comparison. The synthetic ice model test has been conducted to determine the optimal virtual mass coefficients for the two different floe ice distributions. Moreover, the further verification and prediction are developed in different ice conditions. The results show that, the fixed and random distributions in numerical method can simulate the interaction of ship and ice vividly, the trend of total resistance varying with the speed and ice concentration obtained by the numerical simulation is consistent with the model test. The random distribution of floe ice has higher similarity and better accuracy than fixed distribution.

Longitudinal Modal Analysis of a LOX-filled Tank Using the Virtual Mass Method

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.807-815
    • /
    • 2017
  • For liquid rocket engine(LRE)-based space launch vehicles, longitudinal instability, often referred to as the pogo phenomenon in the literature is predicted. In the building block of system-level task, accurate dynamic modeling of a fluid-filled tank is an essential. This paper attempts to apply the virtual mass method that accounts for the interaction of the vehicle structure and the enclosed liquid oxygen to LOX-filled tanks. The virtual mass method is applied in a modal analysis considering the hydroelastic effect of the launch vehicle tank. This method involves an analysis of the fluid in the tank in the form of mass matrix. To verify the accuracy of this method, the experimental modal data of a small hemispherical tank is used. Finally, the virtual mass method is applied to a 1/8-scale space shuttle external tank. In addition, the LOX tank bottom pressure in the external tank model is estimated. The LOX tank bottom pressure is the factor required for the coupling of the LOX tank with the propulsion system. The small hemispherical tank analysis provides relatively accurate results, and the 1/8-scale space shuttle external tank provides reasonable results. The LOX tank bottom pressure is also similar to that in the numerical results of a previous analysis.

인간 모델과 1차 샘플-홀드 방식이 가상 스프링 모델 시스템의 안정성에 미치는 영향 분석 (Effects of a Human Impedance and a First-Order-Hold Method on Stability of a Haptic System with a Virtual Spring Model)

  • 이경노
    • 융복합기술연구소 논문집
    • /
    • 제3권2호
    • /
    • pp.23-29
    • /
    • 2013
  • When a human operator interacts with a virtual wall that is modeled as a virtual spring model, the lager the stiffness of the virtual spring is, the more realistic the operator feels that the virtual wall is. In the previous studies, it is shown that the maximum available stiffness of a virtual spring to guarantee the stability can be increased when the first-order-hold method is applied, however the effects of a human impedance on the stability are not considered. This paper presents the effects of a human impedance on stability of haptic system with a virtual spring and a first-order-hold (FOH) method. The human impedance model is modeled as a linear second-order system model. The relations between the maximum available stiffness of a virtual spring and the human impedance such as a mass, a damping and a stiffness are analyzed through the MATLAB simulation. It is shown that the maximum available stiffness is proportional to the square root of the human mass or damping respectively.

  • PDF

시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석 (Effects of the time delay on the stability of a virtual wall model with a first-order-hold method)

  • 이경노
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.

일차 홀드 방식의 반력 구현 시스템에 대한 안정성 해석 (Stability Analysis of a Haptic System with a First-Order-Hold Method)

  • 이경노
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.389-394
    • /
    • 2014
  • This paper presents the effect of a reflective force computed from a first-order-hold method on the stability of a haptic system. A haptic system is composed of a haptic device with a mass and a damper, a virtual spring, a sampler and a sample-and-hold. The boundary condition of the maximum virtual stiffness is analytically derived by using the Routh-Hurwitz criterion and the condition shows that the maximum virtual stiffness is proportional to the square root of the mass and the damper of a haptic device and also is inversely proportional to the sampling time to the power of three over two. The effectiveness of the derived condition is evaluated by the simulation. When the reflective forces are computed by using the first-order-hold method, the maximum available stiffness to guarantee the stability is increased several hundred times as large as when the zero-order-hold method is applied.

수중에 부분 몰수된 외팔보의 고유진동 특성 (Natural Vibration Characteristics of Cantilever Plate Partially Submerged into Water)

  • 곽문규;양동호;이재하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.229-230
    • /
    • 2012
  • The free flexural vibration of a cantilever plate partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The virtual mass matrix is derived by solving the boundary-value problem related to the fluid motion using elliptical coordinates. The introduction of the elliptical coordinates naturally leads to the use of the Mathieu function. Hence, the virtual mass matrix which reflects the effect of the fluid on the natural vibration characteristics is expressed in analytical form in terms of the Mathieu functions. The virtual mass matrix is then combined with the dynamic model of a thin rectangular plate obtained by using the Rayleigh-Ritz method. This combination is used to analyze the natural vibration characteristics of a partially submerged cantilever plate qualitatively. Also, the non-dimensionalized added virtual mass incremental factors for a partially submerged cantilever plate are presented to facilitate the easy estimation of natural frequencies of a partially submerged cantilever plate. The numerical results validate the proposed approach.

  • PDF

샘플-홀드 방식과 햅틱 장치 물성치에 따른 햅틱 시스템의 안정성 분석 (Stability of Haptic System with consideration for Sample-and-Hold Methods and Properties of Haptic Device)

  • 이경노
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5338-5343
    • /
    • 2013
  • 햅틱 시스템에서 가상 벽의 스프링상수 (Kw)가 크면 클수록 사용자는 실제 벽처럼 느끼지만 햅틱 시스템은 그만큼 불안정해진다. 그래서 시스템의 안정성을 유지하면서 가상 벽에 대한 사용자 몰입감을 향상시키기 위해서 일차 홀드 방식을 이용한 방법을 제시하고자 한다. 특히 가상 벽 (virtual wall)로 구성된 가상 환경과 상호 작용할 때 일차홀드 (FOH) 방식을 이용하는 경우 햅틱 장치의 물성치인 질량 (Md)과 댐핑 상수 (Bd)가 시스템의 안정성에 미치는 영향을 분석한다. 시뮬레이션을 통해 시스템의 안정성을 유지하는 가상 벽의 스프링 상수 (Kw)가 햅틱 장치의 질량 (Md)과 댐핑 상수 (Bd)의 제곱근에 비례한다는 것을 보이고, 이를 통해 기존의 영차홀드 (ZOH) 방식보다 큰 가상 스프링의 구현이 가능함을 보인다. 따라서 사용자의 몰입감 높은 햅틱 시스템 구현이 가능함을 보인다. 그리고 시뮬레이션 결과분석을 통해 시스템 안정성을 보장하는 가상 스프링 상수 (Kw)의 범위를 샘플링 주기 (T), 햅틱 장치의 질량 (Md), 댐핑 상수 (Bd)의 관계로 유도한 결과가 $K_w{\leq}{1.611M_d}^{0.50}{B_d}^{0.50}T^{-1.51}$ 임을 보인다. 이 때 시뮬레이션 결과와의 상대 오차가 평균 0.53%로 매우 작다.

가상 HC 센서를 이용한 Evaporative System Monitoring 방법에 대한 연구 (An Evaporative System Monitoring Method Using a Virtual HC Sensor)

  • 서진호;박재홍;윤형진
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.40-47
    • /
    • 2003
  • This paper presents a new evaporative system monitoring method using a virtual HC sensor for an automotive on-board diagnosis. A development was made at providing mathematical expressions from the lambda control information to estimate the HC mass flow purged into the intake manifold from the canister for implementing a virtual HC sensor. The change of the lambda averagevalue reflected the influence of the additional fuel from purging results the sensor estimation of the purged HC amount. Based on this virtual HC sensor, a new evaporative system monitoring method was proposed comparing the amount of purged HC amount with the amount of the HC gas evaporated from the fuel tank and absorbed into the canister. Finally, the method was validated with a simulation using the data logged from the retail car.

동작 정보를 갖는 가상설비 데이터 재활용 방법론 (A Method of Reusing Kinematic Information for Virtual Facilities)

  • 고민석;신혜선;왕지남;박상철
    • 한국CDE학회논문집
    • /
    • 제16권4호
    • /
    • pp.305-313
    • /
    • 2011
  • This paper proposes a method for reusing kinematic design data for virtual facilities, Making a virtual model of a facility involves two major activities: geometric design (virtual model visualization) and kinematic design that should be remodeled frequently whenever design changes occur, Conventionally, a virtual model of an automated facility focuses on the design level, which mainly deals with design verification, alternative comparison, and geometric model diagnosis, Although a design level model can be designed with the information of past models from PLM system, a simulation level model is not sufficient utilized to be reused for kinematic design purpose, We propose a method for reusing kinematic information of a past simulation model to cope with this problem, We use the concept or the 'center of mass', which is a point representing the mean position of the matter in a body or system. And we also use comparison method of a boundary box to identity which 3D objects have to be involved from the design model to a link structure that is contained in the simulation model. Because a proposed method only use not a historical approach but a geometrical approach, it is more effective to apply to the field.