• 제목/요약/키워드: Virtual vehicle experiment

검색결과 31건 처리시간 0.03초

후방추돌평가 시험을 위한 가상환경 시나리오 개발연구 (A study on scenario in virtual environment for test about rear-end collision)

  • 백우경;김배영;김시우;정충민;송종원;서명원
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.17-21
    • /
    • 2011
  • Vehicle safety device such as active headrest and rear detection system has been developing as people are interested about rear end collision more than head on or than front. However, there is no any standard or criterion in order to evaluate vehicle safety device for rear end collision. Also there is no test protocol about rear end collision in vehicle experiment. Therefore, this research developed scenario for experiment about rear end collision in vehicle experiment. Also this research evaluated dangerousness about vehicle test and fitness about re-enacting rear end collision using scenario developed using commercial software (PC-Crash) which can re-enact vehicle collision in virtual vehicle experiment. Scenario developed according to statistics from National Highway Traffic Safety Administration and German In-Depth Accident Study. Scenario has twelve cases which composed of Re-LVS (Rear end Leading Vehicle Stop), Re-LVM (Rear end Lead Vehicle Moving) and scenario for evaluation about malfunction of active headrest.

전기 자동차 가상 플랫폼용 배터리 모델 개발 및 검증 (Development of a Battery Model for Electric Vehicle Virtual Platform)

  • 김선우;조종민;한재영;김성수;차한주;유상석
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.486-493
    • /
    • 2015
  • In this paper, a battery model for electric vehicle virtual platform was developed. A battery model consisted of a battery cell model and battery thermal management system. A battery cell model was developed based on Randles equivalent circuit model. Circuit parameters in the form of 3D map data was obtained by charge-discharge experiment of Li-Polymer battery in various temperature condition. The developed battery cell model was experimentally verified by comparing voltages. Thermal management system model was also developed using heat generator, heat transfer and convection model, and cooling fan. For verification of the developed battery model in vehicle level, the integrated battery model was applied in to EV(electric vehicle) virtual platform, and virtual driving simulation using UDDS velocity profile was conducted. The accuracy of the developed battery model has been verified by comparing the simulation results from EV platform with the experimental data.

가상현실 기반의 차량 시뮬레이터의 현실감 향상에 관한 연구 (A Study on Improving the Reality of the Vehicle Simulator Based on the Virtual Reality)

  • 최영일;권성진;장석;김규희;조기용;서명원
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1116-1124
    • /
    • 2004
  • In these days, a vehicle simulator has been developed with a VR(Virtual Reality) system. A VR system must provide a vehicle simulator with natural interaction, sufficient immersion and realistic images. In addition, a VR system must present a driver with the realistic driving situation. To achieve these, it is important to obtain a fast and uniform rendering performance regardless of the complexity of virtual worlds. In this paper, the factors to improve the reality for the VR based vehicle simulator have been investigated. For the purpose, the modeling and the rendering methods which offer an improved performance for complex VR applications as the 3D road model have been implemented and verified. Then, we experiment on the influence of graphic and sound factors to the driver, and analyze each result for improving the reality such as the driver's viewport, the form of texture, the lateral distance of the side object, and the sound effect. These factors are evaluated on the driving system which is constructed for qualitative analysis. The research results could be used for improving the reality of the VR based vehicle simulator.

차량 진동특성 해석을 위한 VTL 차량 모델 개발에 관한 연구 (A Study on the Development of the VTL Vehicle Dynamics Model to Analyze Vibration Characteristics)

  • 권성진;배철용;김찬중;이봉현;구병국;노국희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.409-414
    • /
    • 2007
  • Nowadays, with the advancement of computational mechanics, and vehicle dynamics simulation linked up with virtual testing laboratory(VTL) and virtual proving ground(VPG) technologies has become a useful method for analyzing numerous driving performances and diverse noise/vibration characteristics. In this paper, the analytical vehicle model based on multi-body dynamics theory was developed to investigate the vibration characteristics according to various road conditions. For the purpose, the whole vehicle parameters, each vehicle's part parameter, and part connecting elements such as spring, damper, and bush were measured by an experiment. Also, the vehicle dynamics model, which includes the front suspension, rear suspension, steering, front wheel, rear wheel, and body subsystems has been constructed for computer simulation. With the developed vehicle dynamics model, three forces and three moments measured at each wheel center were applied to evaluate and analyze dynamics and vibration characteristics for miscellaneous road conditions.

  • PDF

유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경 (Autonomous-Driving Vehicle Learning Environments using Unity Real-time Engine and End-to-End CNN Approach)

  • 사비르 호사인;이덕진
    • 로봇학회논문지
    • /
    • 제14권2호
    • /
    • pp.122-130
    • /
    • 2019
  • Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.

가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획 (Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle)

  • 박성국;이지홍;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.61-70
    • /
    • 2009
  • An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

웜업시 엔진 마찰이 차량 모드 연비에 미치는 영향 (Effect of Engine Friction on Vehicle Fuel Economy during Warm-up)

  • 임건병;위효성;박진일;이종화;박경석
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.109-114
    • /
    • 2008
  • An improvement of vehicle fuel economy is one of the most important topic in automotive engineering. Lots of engineers make efforts to achieve 1% of fuel economy improvement. Engine friction is an important factor influencing vehicle fuel economy. This paper focuses on effect of engine friction on vehicle fuel economy during warm-up. A computer simulation is one of the powerful tools in automotive engineering field. Recently Simulation is attempting to virtual experiment not using expensive instruments. It is possible to presuppose fuel economy by changing the characteristic of accessories using CRUISE(vehicle simulation software). In this paper, fuel consumption at each part of the vehicle is analyzed by both of experiment and simulation. The results of fuel economy analysis on experiment substitute for Cruise to calculate fuel economy. The simulation data such as engine speed, brake torque, shift pattern, vehicle speed, fuel consumption level is well correlated to experiment data. In this paper, the change of warm-up time, faster or slower, through simulation is performed. As a result of the fast warm-up, fuel economy is improved up to 1.7%.

먼지 환경의 무인차량 운용을 위한 장애물 탐지 기법 (A Method of Obstacle Detection in the Dust Environment for Unmanned Ground Vehicle)

  • 최덕선;안성용;박용운
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.1006-1012
    • /
    • 2010
  • For the autonomous navigation of an unmanned ground vehicle in the rough terrain and combat, the dust environment should necessarily be overcome. Therefore, we propose a robust obstacle detection methodology using laser range sensor and radar. Laser range sensor has a good angle and distance accuracy, however, it has a weakness in the dust environment. On the other hand, radar has not better the angle and distance accuracy than laser range sensor, it has a robustness in the dust environment. Using these characteristics of laser range sensor and radar, we use laser range sensor as a main sensor for normal times and radar as a assist sensor for the dust environment. For fusion of laser range sensor and radar information, the angle and distance data of the laser range sensor and radar are separately transformed to the angle and distance data of virtual range sensor which is located in the center of the vehicle. Through distance comparison of laser range sensor and radar in the same angle, the distance data of a fused virtual range sensor are changed to the distance data of the laser range sensor, if the distance of laser range sensor and radar are similar. In the other case, the distance data of the fused virtual range sensor are changed to the distance data of the radar. The suggested methodology is verified by real experiment.

실차 주행 조건을 고려한 인휠 차량 거동 해석 및 동력 시험계 부하 토크 인가를 위한 구동 모터의 동적 부하 도출시스템 개발 (Dynamic Performance Analyzing of In-wheel Vehicle considering the Real Driving Conditions and Development of Derivation System for Applying Dynamometer Using Drive Motor's Dynamic Load Torque)

  • 손승완;김기영;차석원;임원식;김정윤
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.294-301
    • /
    • 2016
  • This paper discusses about analyzing in-wheel vehicle's dynamic motion and load torque. Since in-wheel vehicle controls each left and right driving wheels, it is dangerous if vehicle's wheels are not in a cooperative control. First, this study builds the main wheel control logic using PID control theory and evaluates the stability. Using Carsim-Matlab/Simulink, vehicle dynamic motion is simulated in virtual 3D driving road. Through this, in-wheel vehicle's driving performance can be analyzed. The target vehicle is a rear-wheel drive in D-class sedan. Second, by using the first In-wheel vehicle's performance results, it derivate the drive motor's dynamic load torque for applying the dynamometer. Extracted load torque impute to dynamometer's load motor, linear experiment in dynamometer can replicated the 3-D road driving status. Also it, will be able to evaluate the more accurate performance analysis and stability, as a previous step of actual vehicle experiment.

비드 형상에 따른 실린더 헤드 가스켓의 비선형 거동 특성 (Effects of the Bead Shape on the Nonlinear Behavior of Cylinder Head Gasket)

  • 변철진;유승현;윤천한;박종국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.321-325
    • /
    • 2000
  • Gasket of vehicle engine maintains airtight between cylinder head and engine block under high temperature and pressure, and plays important role in heat conduction of engine. And the characterization of the nonlinear behavior of metal gasket fer various bead shapes is very important as basic research for estimation of gasket durability. But it is very difficult to analyze the behavior of gasket In real experiment. In this paper, to analysis effects of the bead shape on the nonlinear behavior of cylinder head gasket under uniform pressure, the virtual experiment using the nonlinear finite element method was performed. Results are analyzed with residual deformation and the sealing pressure. With the increase of the height and the width of bead, the residual deformation and the sealing pressure increase. And if the height is very high and the width is very narrow, the wrinkles are occurred in the gasket while working.

  • PDF